Faraj Hijaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6261687/publications.pdf Version: 2024-02-01

ΕλΟΛΙ ΗΠΑΖ

#	Article	IF	CITATIONS
1	Development of Europium-Sensitized Fluorescence-Based Method for Sensitive Detection of Oxytetracycline in Citrus Tissues. Antibiotics, 2021, 10, 224.	1.5	5
2	Citrate Mediated Europium-Based Detection of Oxytetracycline in Citrus Tissues. Antibiotics, 2021, 10, 566.	1.5	2
3	Detection of Oxytetracycline in Citrus Phloem and Xylem Saps Using Europium-Based Method. Antibiotics, 2021, 10, 1036.	1.5	5
4	Effect of Adjuvants on Oxytetracycline Uptake upon Foliar Application in Citrus. Antibiotics, 2020, 9, 677.	1.5	19
5	Knock-down of \hat{l}' aminolevulinic acid dehydratase via virus-induced gene silencing alters the microRNA biogenesis and causes stress-related reactions in citrus plants. Plant Science, 2020, 299, 110622.	1.7	7
6	Metabolic Profiling of Hybrids Generated from Pummelo and Citrus latipes in Relation to Their Attraction to Diaphorina citri, the Vector of Huanglongbing. Metabolites, 2020, 10, 477.	1.3	0
7	The Role of the Xylem in Oxytetracycline Translocation within Citrus Trees. Antibiotics, 2020, 9, 691.	1.5	12
8	The use of deuterium-labeled gamma-aminobutyric (D6-GABA) to study uptake, translocation, and metabolism of exogenous GABA in plants. Plant Methods, 2020, 16, 24.	1.9	17
9	Effect of fruit maturity on volatiles and sensory descriptors of four mandarin hybrids. Journal of Food Science, 2020, 85, 1548-1564.	1.5	18
10	Evaluation of Oxytetracycline Metabolites Cross-Reactivity with Oxytetracycline Enzyme-Linked Immunosorbent Assay (ELISA). Antibiotics, 2020, 9, 183.	1.5	6
11	Phenolics, flavonoids and antioxidant capacities in <i>Citrus</i> species with different degree of tolerance to Huanglongbing. Plant Signaling and Behavior, 2020, 15, 1752447.	1.2	35
12	Exogenous GABA is quickly metabolized to succinic acid and fed into the plant TCA cycle. Plant Signaling and Behavior, 2019, 14, e1573096.	1.2	43
13	Citrus tristeza virus-based induced gene silencing of phytoene desaturase is more efficient when antisense orientation is used. Plant Biotechnology Reports, 2019, 13, 179-192.	0.9	12
14	Uptake, Translocation, and Stability of Oxytetracycline and Streptomycin in Citrus Plants. Antibiotics, 2019, 8, 196.	1.5	33
15	Tracing Penicillin Movement in Citrus Plants Using Fluorescence-Labeled Penicillin. Antibiotics, 2019, 8, 262.	1.5	7
16	Effect of different rootstocks on the leaf metabolite profile of â€~Sugar Belle' mandarin hybrid. Plant Signaling and Behavior, 2018, 13, e1445934.	1.2	9
17	A plant pathogenic bacterium exploits the tricarboxylic acid cycle metabolic pathway of its insect vector. Virulence, 2018, 9, 99-109.	1.8	37
18	Citrus phytohormonal response to Candidatus Liberibacter asiaticus and its vector Diaphorina citri. Physiological and Molecular Plant Pathology, 2018, 102, 24-35.	1.3	64

Faraj Hijaz

#	Article	IF	CITATIONS
19	Effects of <i>δ</i> â€aminolevulinic acid dehydratase silencing on the primary and secondary metabolisms of citrus. Plant Direct, 2018, 2, e00072.	0.8	23
20	Metabolically engineered anthocyanin-producing lime provides additional nutritional value and antioxidant potential to juice. Plant Biotechnology Reports, 2018, 12, 329-346.	0.9	10
21	All roads lead to Rome: Towards understanding different avenues of tolerance to huanglongbing in citrus cultivars. Plant Physiology and Biochemistry, 2018, 129, 1-10.	2.8	42
22	Application of gamma-aminobutyric acid increased the level of phytohormones in Citrus sinensis. Planta, 2018, 248, 909-918.	1.6	51
23	Effects of Citrus tristeza closterovirus infection on phloem sap and released volatile organic compounds in Citrus macrophylla. Physiological and Molecular Plant Pathology, 2017, 98, 25-36.	1.3	15
24	Metabolically speaking: Possible reasons behind the tolerance of â€ [~] Sugar Belle' mandarin hybrid to huanglongbing. Plant Physiology and Biochemistry, 2017, 116, 36-47.	2.8	46
25	A Plant Bacterial Pathogen Manipulates Its Insect Vector's Energy Metabolism. Applied and Environmental Microbiology, 2017, 83, .	1.4	45
26	Metabolomic analyses of the haemolymph of the <scp>A</scp> sian citrus psyllid <i><scp>D</scp>iaphorina citri</i> , the vector of huanglongbing. Physiological Entomology, 2017, 42, 134-145.	0.6	36
27	RNA interference of acetylcholinesterase in the Asian citrus psyllid, Diaphorina citri, increases its susceptibility to carbamate and organophosphate insecticides. Pesticide Biochemistry and Physiology, 2017, 143, 81-89.	1.6	32
28	Nucleotides, micro- and macro-nutrients, limonoids, flavonoids, and hydroxycinnamates composition in the phloem sap of sweet orange. Plant Signaling and Behavior, 2016, 11, e1183084.	1.2	25
29	Phytohormone profiling of the sweet orange (Citrus sinensis (L.) Osbeck) leaves and roots using GC–MS-based method. Journal of Plant Physiology, 2016, 199, 12-17.	1.6	57
30	Amino acids implicated in plant <u>defense</u> are higher in <i>Candidatus</i> Liberibacter asiaticus-tolerant citrus varieties. Plant Signaling and Behavior, 2016, 11, e1171449.	1.2	58
31	A gas chromatography–mass spectrometry method for the determination of delta-aminolevulinic acid in plant leaves. Journal of Chromatography A, 2016, 1447, 57-63.	1.8	6
32	Chemical composition of cornicle secretion of the brown citrus aphid <i>Toxoptera citricida</i> . Physiological Entomology, 2016, 41, 38-47.	0.6	5
33	Effect of hostâ€plant and infection with â€~ <i><scp>C</scp>andidatus</i> Liberibacter asiaticus' on honeydew chemical composition of the Asian citrus psyllid, <i><scp>D</scp>iaphorina citri</i> . Entomologia Experimentalis Et Applicata, 2016, 158, 34-43.	0.7	13
34	Development of delayed bitterness and effect of harvest date in stored juice from two complex citrus hybrids. Journal of the Science of Food and Agriculture, 2016, 96, 422-429.	1.7	14
35	Impact of different temperatures on survival and energy metabolism in the Asian citrus psyllid, Diaphorina citri Kuwayama. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2016, 192, 28-37.	0.8	26
36	Possible role of plant volatiles in tolerance against huanglongbing in citrus. Plant Signaling and Behavior, 2016, 11, e1138193.	1.2	79

Faraj Hijaz

#	Article	IF	CITATIONS
37	Viability of â€~ <i>Candidatus</i> Liberibacter asiaticus' Prolonged by Addition of Citrus Juice to Culture Medium. Phytopathology, 2014, 104, 15-26.	1.1	50
38	Collection and Chemical Composition of Phloem Sap from Citrus sinensis L. Osbeck (Sweet Orange). PLoS ONE, 2014, 9, e101830.	1.1	130
39	Herbivory by the insect d <i>iaphorina citri</i> Âinduces greater change in citrus plant volatile profile than does infection by the bacterium, <i><i>CandidatusLiberibacter asiaticus. Plant Signaling and Behavior, 2013, 8, e25677.</i></i>	1.2	46
40	An HPLC-MS Characterization of the Changes in Sweet Orange Leaf Metabolite Profile following Infection by the Bacterial Pathogen Candidatus Liberibacter asiaticus. PLoS ONE, 2013, 8, e79485.	1.1	45
41	Ammonia Gas Permeability of Meat Packaging Materials. Journal of Food Science, 2011, 76, T59-64.	1.5	2
42	Frozen Beef Contamination after Exposure to Low Levels of Ammonia Gas. Journal of Food Science, 2010, 75, T35-9.	1.5	2
43	<i>In Vitro</i> â€,andâ€, <i>In Vivo</i> â€,Metabolism of the Radiolytic Compound 2â€Đodecylcyclobutanone. Journal of Food Science, 2010, 75, T72-80.	1.5	6
44	A Rapid Direct Solvent Extraction Method for the Extraction of 2â€Đodecylcyclobutanone from Irradiated Ground Beef Patties Using Acetonitrile. Journal of Food Science, 2010, 75, T118-22.	1.5	11
45	Levels of 2â€Ðodecylcyclobutanone in Ground Beef Patties Irradiated by Lowâ€Energy Xâ€Ray and Gamma Rays. Journal of Food Science, 2010, 75, T156-60.	1.5	8
46	Evaluation of Various Ammonia Assays for Testing of Contaminated Muscle Food Products. Journal of Food Science, 2007, 72, C253-C257.	1.5	5