Shinji Tamano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6261452/publications.pdf Version: 2024-02-01

SHINII TAMANO

#	Article	IF	CITATIONS
1	Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise traveling wave motion. Journal of Turbulence, 2006, 7, N27.	1.4	41
2	Direct numerical simulation of the drag-reducing turbulent boundary layer of viscoelastic fluid. Physics of Fluids, 2007, 19, 075106.	4.0	36
3	Drag reduction and degradation of nonionic surfactant solutions with organic acid in turbulent pipe flow. Journal of Non-Newtonian Fluid Mechanics, 2015, 215, 1-7.	2.4	36
4	Drag reduction in turbulent boundary layers by spanwise traveling waves with wall deformation. Journal of Turbulence, 2012, 13, N9.	1.4	34
5	Velocity measurement in turbulent boundary layer of drag-reducing surfactant solution. Physics of Fluids, 2005, 17, 075107.	4.0	32
6	Turbulence statistics and structures of drag-reducing turbulent boundary layer in homogeneous aqueous surfactant solutions. Physics of Fluids, 2009, 21, .	4.0	32
7	Turbulent drag reduction in nonionic surfactant solutions. Physics of Fluids, 2010, 22, .	4.0	31
8	Streamwise variation of turbulent dynamics in boundary layer flow of drag-reducing fluid. Journal of Fluid Mechanics, 2011, 686, 352-377.	3.4	29
9	Effect of rheological properties on drag reduction in turbulent boundary layer flow. Physics of Fluids, 2009, 21, 055101.	4.0	21
10	Turbulent drag reduction of boundary layer flow with non-ionic surfactant injection. Journal of Fluid Mechanics, 2014, 749, 367-403.	3.4	15
11	Streamwise variations of turbulence statistics up to maximum drag reduction state in turbulent boundary layer flow due to surfactant injection. Physics of Fluids, 2018, 30, .	4.0	14
12	Effects of Degradation on Drag Reduction in Turbulent Pipe Flow of Nonionic Surfactant Aqueous Solutions. Nihon Reoroji Gakkaishi, 2012, 40, 69-77.	1.0	11
13	Dynamics of falling droplet and elongational properties of dilute nonionic surfactant solutions with drag-reducing ability. Physics of Fluids, 2017, 29, 053104.	4.0	11
14	Rheological modeling of both shear-thickening and thinning behaviors through constitutive equations. Journal of Non-Newtonian Fluid Mechanics, 2020, 283, 104339.	2.4	8
15	Comparison of turbulence structures at large and small drag reduction ratios in turbulent boundary layer of surfactant solutions. Journal of Turbulence, 2011, 12, N18.	1.4	7
16	Improving computational accuracy in dissipative particle dynamics via a high order symplectic method. Journal of Chemical Physics, 2018, 148, 224101.	3.0	3
17	Drag Reduction of Photorheological Fluids Composed of Nonionic Surfactant and Photoreactive Additives. Nihon Reoroji Gakkaishi, 2016, 44, 205-210.	1.0	3
18	PIV Measurement of Secondary Flow in Curvilinear Pipe Flow of Polymer Solution(Fluids Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2009, 75, 2115-2121.	0.2	2

#	Article	IF	CITATIONS
19	Measurement of Velocity Field in Turbulent Boundary Layer of Aqueous Surfactant Solution. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2004, 70, 1140-1147.	0.2	1
20	Flow Fields and Side Load in Compressed 2D Dual Bell Nozzles. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2007, 73, 2204-2212.	0.2	1
21	Direct Numerical Simulation of Drag-Reducing Turbulent Boundary Layer of Viscoelastic Fluid (1st) Tj ETQq1 1 0.7 Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2007, 73, 490-497.	784314 rg 0.2	BT /Overloci 1
22	Vortex Shedding in Confined Swirling Flows of Polymer Solutions with a Partially Rotating Disc. AlP Conference Proceedings, 2008, , .	0.4	1
23	Flow Visualization of Fluid Mixing in Curvilinear Pipe Flow of Polymer Solution(Fluids Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2009, 75, 2122-2127.	0.2	1
24	Drag-Reducing Effect of Nonionic Surfactant Solutions(Fluids Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2009, 75, 1598-1607.	0.2	1
25	Flow Behavior and Turbulent Drag Reduction of Viscoelastic Fluids. Nihon Reoroji Gakkaishi, 2014, 41, 289-300.	1.0	1
26	Temperature Error Reduction of DPD Fluid by Using Partitioned Runge-Kutta Time Integration Scheme. Fluids, 2019, 4, 156.	1.7	1
27	Numerical Simulation of Confined Swirling Flow of Viscoelastic Fluid due to Partially Rotating Disc. Nihon Reoroji Gakkaishi, 2010, 38, 9-16.	1.0	1
28	Drag Reduction of Nonionic Surfactant in Ethylene Glycol Aqueous Solution at Normal Temperature. Nihon Reoroji Gakkaishi, 2016, 44, 189-194.	1.0	1
29	Numerical Analysis of Compressible Turbulent Channel Flow with Wall-Temperature Difference. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2004, 70, 847-854.	0.2	0
30	Study on Differences in Turbulence Statistics between Compressible and Incompressible Low-Reynolds Number Turbulent Channel Flows Using Semi-Local Scaling. JSME International Journal Series B, 2005, 48, 743-749.	0.3	0
31	Flow of Aqueous Surfactant Solution due to a Rotating Disc in a Cylindrical Casing. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2005, 71, 1043-1050.	0.2	0
32	Flow Visualization of Unsteady Behaviour in Confined Swirling Flow of Polymer Solutions. 880-02 Nihon Kikai Gakkai RonbunshA« Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2006, 72, 2672-2679.	0.2	0
33	Turbulent Drag Reduction on Seal Fur Surfaces. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2006, 72, 1181-1188.	0.2	0
34	Vortex Shedding in Confined Swirling Flow of Polymer Solutions. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2007, 73, 482-489.	0.2	0
35	Direct Numerical Simulation of Drag-Reducing Turbulent Boundary Layer of Viscoelastic Fluid (2nd) Tj ETQq1 1 0. of the Japan Society of Mechanical Engineers Series B B-hen, 2007, 73, 498-505.	784314 rg 0.2	gBT /Overlcc 0

 $_{36}$ \qquad Behaviors and Effects of Movable Objects in Supersonic Flows. , 2008, , .

Shinji Tamano

#	Article	IF	CITATIONS
37	Effects of Concentration of Surfactant Solutions on Drag-Reducing Turbulent Boundary Layer. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2008, 74, 1075-1082.	0.2	0
38	Effects of Temperature of Surfactant Solutions on Drag-Reducing Turbulent Boundary Layer. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2008, 74, 1083-1090.	0.2	0
39	Drag Reduction in Turbulent Boundary Layer over Flexible Sheet due to Spanwise Traveling Wave Motion(Fluids Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2009, 75, 1798-1806.	0.2	0
40	Turbulence Structures in Drag-Reducing Turbulent Boundary Layer of Surfactant Solution : Comparison between Flow Fields of Large and Small Drag Reduction Ratios(Fluids Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2009. 75. 2352-2360.	0.2	0
41	Flow Visualization of Ring Vortex in Confined Swirling Flow of Polymer Solutions due to Partially Rotating Disc(Fluids Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2010, 76, 4-10.	0.2	0
42	PIV Measurement of Ring Vortex in Confined Swirling Flow of Polymer Solutions due to Partially Rotating Disc(Fluids Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2010, 76, 11-19.	0.2	0
43	Numerical Analysis for the Effect of Rotation on Vortex Structure in Oscillating Grid Turbulence. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2013, 79, 822-837.	0.2	0
44	Tracking one dimensional water freezing in a 500-μm-deep microchannel chamber using water NIR-adsorption characteristics. International Communications in Heat and Mass Transfer, 2021, 128, 105597.	5.6	0
45	An Experimental Investigation of the Flow through the Staggered Tube Banks Arranged just Downstream of an Elbow Duct. The Proceedings of Conference of Tokai Branch, 2004, 2004.53, 337-338.	0.0	0
46	706 Characteristics of a Multistage Viscous Micropump Using Cylindrical Rotors. The Proceedings of Conference of Tokai Branch, 2006, 2006.55, 275-276.	0.0	0
47	713 An Experimental Investigation of the Flow through the Staggered Tube Banks Arranged Downstream of an Elbow Duct. The Proceedings of Conference of Tokai Branch, 2006, 2006.55, 289-290.	0.0	0
48	321 A study of oscillating jet excited by flutter(1). The Proceedings of the Fluids Engineering Conference, 2007, 2007, _321-a	0.0	0
49	558 Characteristics of Oscillation and Effect of a Flow Field of Flexible Vortex Generators in Supersonic Flows. The Proceedings of Conference of Tokai Branch, 2007, 2007.56, 265-266.	0.0	0
50	324 A Study of a Flexible Sheet on a Lip of Jet Outlet(1). The Proceedings of the Fluids Engineering Conference, 2007, 2007, _324-a	0.0	0
51	324 A Study of a Flexible Sheet on a Lip of Jet Outlet(2). The Proceedings of the Fluids Engineering Conference, 2007, 2007, _324-1324-4	0.0	0
52	557 A Study on the Characteristics of Vibrations and Flow Field of Oscillating Jet using Rubber Sheets. The Proceedings of Conference of Tokai Branch, 2007, 2007.56, 263-264.	0.0	0
53	1415 Vortex Shedding in Confined Swirling Flow of Polymer Solution due to Partial Rotating Disc. The Proceedings of the JSME Annual Meeting, 2007, 2007.2, 29-30.	0.0	0
54	321 A study of oscillating jet excited by flutter(2). The Proceedings of the Fluids Engineering Conference, 2007, 2007, _321-1321-4	0.0	0

Shinji Tamano

#	Article	IF	CITATIONS
55	359 Experimental study on Behavior of Elastic or Rigid Plates and the Flow Fields in a Supersonic Flow. The Proceedings of Conference of Tokai Branch, 2008, 2008.57, 233-234.	0.0	0
56	351 A study on the flow field and the behavior of the flexible sheet attached at the jet exit with a step. The Proceedings of Conference of Tokai Branch, 2008, 2008.57, 217-218.	0.0	0
57	568 The investigation on interaction between jet and pitching flutter. The Proceedings of Conference of Tokai Branch, 2009, 2009.58, 359-360.	0.0	0
58	569 A study of jet oscillation with elastic plate. The Proceedings of Conference of Tokai Branch, 2009, 2009.58, 361-362.	0.0	0
59	570 Influence of Oscillating Elastic Sheet on Pressure Field in Super Sonic Flow. The Proceedings of Conference of Tokai Branch, 2009, 2009.58, 363-364.	0.0	0
60	559 Flutter Characteristics of Airfoils Consisted of Rigid and Elastic Plates. The Proceedings of Conference of Tokai Branch, 2009, 2009.58, 341-342.	0.0	0
61	469 Characteristic of fluid forces in pitching flutter. The Proceedings of Conference of Tokai Branch, 2010, 2010.59, 267-268.	0.0	0
62	470 Transition of Jet Oscillation with an Elastic Plate Fixed at The Trailing Edge in a Jet. The Proceedings of Conference of Tokai Branch, 2010, 2010.59, 269-270.	0.0	0
63	456 An experiment of the span wise uniformity effect on the flow around yawed cylinder circumference. The Proceedings of Conference of Tokai Branch, 2010, 2010.59, 241-242.	0.0	0
64	465 Research on Power Generation by Flutter of Wing with Elastic Body. The Proceedings of Conference of Tokai Branch, 2010, 2010.59, 259-260.	0.0	0
65	364 Drag reduction in turbulent boundary layer with surfactant injection. The Proceedings of Conference of Tokai Branch, 2011, 2011.60, _364-1364-2	0.0	0
66	Drag reduction due to nonionic-type surfactants in turbulent pipe flow of ethylene glycol aqueous solution. AIP Advances, 2022, 12, 055109.	1.3	0