
Antonio Rodriguez-Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6261423/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kainate Receptor Modulation of GABA Release Involves a Metabotropic Function. Neuron, 1998, 20, 1211-1218.	3.8	313
2	Kainate Receptors Presynaptically Downregulate GABAergic Inhibition in the Rat Hippocampus. Neuron, 1997, 19, 893-901.	3.8	293
3	Molecular Physiology of Kainate Receptors. Physiological Reviews, 2001, 81, 971-998.	13.1	276
4	Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1293-1298.	3.3	148
5	The Impact of Studying Brain Plasticity. Frontiers in Cellular Neuroscience, 2019, 13, 66.	1.8	145
6	Spike timing–dependent long-term depression requires presynaptic NMDA receptors. Nature Neuroscience, 2008, 11, 744-745.	7.1	139
7	Switch from Facilitation to Inhibition of Excitatory Synaptic Transmission by Group I mGluR Desensitization. Neuron, 1998, 21, 1477-1486.	3.8	122
8	Double Dissociation of Spike Timing–Dependent Potentiation and Depression by Subunit-Preferring NMDA Receptor Antagonists in Mouse Barrel Cortex. Cerebral Cortex, 2009, 19, 2959-2969.	1.6	121
9	Presynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus. Cerebral Cortex, 2016, 26, 3637-3654.	1.6	109
10	Activation and desensitization properties of native and recombinant kainate receptors. Neuropharmacology, 1998, 37, 1249-1259.	2.0	106
11	Kainate receptors with a metabotropic modus operandi. Trends in Neurosciences, 2007, 30, 630-637.	4.2	93
12	Presynaptic kainate receptor facilitation of glutamate release involves protein kinase A in the rat hippocampus. Journal of Physiology, 2004, 557, 733-745.	1.3	87
13	Towards resolving the presynaptic NMDA receptor debate. Current Opinion in Neurobiology, 2018, 51, 1-7.	2.0	68
14	Presynaptic Induction and Expression of Timing-Dependent Long-Term Depression Demonstrated by Compartment-Specific Photorelease of a Use-Dependent NMDA Receptor Antagonist. Journal of Neuroscience, 2011, 31, 8564-8569.	1.7	67
15	TrkB Modulates Fear Learning and Amygdalar Synaptic Plasticity by Specific Docking Sites. Journal of Neuroscience, 2009, 29, 10131-10143.	1.7	56
16	Presynaptic Self-Depression at Developing Neocortical Synapses. Neuron, 2013, 77, 35-42.	3.8	56
17	Kainate Receptors: Role in Epilepsy. Frontiers in Molecular Neuroscience, 2018, 11, 217.	1.4	55
18	Astrocyte-mediated switch in spike timing-dependent plasticity during hippocampal development. Nature Communications, 2020, 11, 4388.	5.8	55

#	Article	IF	CITATIONS
19	Distinct mechanisms of spike timing-dependent LTD at vertical and horizontal inputs onto L2/3 pyramidal neurons in mouse barrel cortex. Physiological Reports, 2014, 2, e00271.	0.7	53
20	An in vitro and in vivo study of early deficits in associative learning in transgenic mice that over-express a mutant form of human APP associated with Alzheimer's disease. European Journal of Neuroscience, 2004, 20, 1945-1952.	1.2	52
21	Metabotropic actions of kainate receptors in the CNS. Journal of Neurochemistry, 2007, 103, 2121-2135.	2.1	52
22	Calcium Dynamics and Synaptic Plasticity. Advances in Experimental Medicine and Biology, 2020, 1131, 965-984.	0.8	51
23	Chronic administration of resveratrol prevents morphological changes in prefrontal cortex and hippocampus of aged rats. Synapse, 2016, 70, 206-217.	0.6	49
24	Presynaptic NMDA receptors and spike timing-dependent long-term depression at cortical synapses. Frontiers in Synaptic Neuroscience, 2010, 2, 18.	1.3	48
25	Clozapine administration reverses behavioral, neuronal, and nitric oxide disturbances in the neonatal ventral hippocampus rat. Neuropharmacology, 2012, 62, 1848-1857.	2.0	46
26	Kainate Receptor–Mediated Inhibition of Clutamate Release Involves Protein Kinase A in the Mouse Hippocampus. Journal of Neurophysiology, 2006, 96, 1829-1837.	0.9	44
27	Presynaptic kainate receptorâ€mediated facilitation of glutamate release involves Ca ²⁺ –calmodulin and PKA in cerebrocortical synaptosomes. FEBS Letters, 2013, 587, 788-792.	1.3	44
28	Adenosine Receptor-Mediated Developmental Loss of Spike Timing-Dependent Depression in the Hippocampus. Cerebral Cortex, 2019, 29, 3266-3281.	1.6	40
29	Kainate receptor-mediated presynaptic inhibition converges with presynaptic inhibition mediated by Group II mGluRs and long-term depression at the hippocampal mossy fiber-CA3 synapse. Journal of Neural Transmission, 2007, 114, 1425-1431.	1.4	39
30	Presynaptic kainate receptorâ€mediated facilitation of glutamate release involves Ca ²⁺ –calmodulin at mossy fiber–CA3 synapses. Journal of Neurochemistry, 2012, 122, 891-899.	2.1	38
31	Presynaptic kainate receptor-mediated bidirectional modulatory actions: Mechanisms. Neurochemistry International, 2013, 62, 982-987.	1.9	37
32	Kainate Receptors. Neuroscientist, 2014, 20, 29-43.	2.6	36
33	Dendritic morphology changes in neurons from the prefrontal cortex, hippocampus and nucleus accumbens in rats after lesion of the thalamic reticular nucleus. Neuroscience, 2012, 223, 429-438.	1.1	35
34	Hippocampal mossy fiber longâ€ŧerm depression in Grm2/3 double knockout mice. Synapse, 2011, 65, 945-954.	0.6	33
35	Rapamycin restores BDNF-LTP and the persistence of long-term memory in a model of Down's syndrome. Neurobiology of Disease, 2015, 82, 516-525.	2.1	32
36	Preâ€synaptic kainate receptorâ€mediated facilitation of glutamate release involves <scp>PKA</scp> and Ca ²⁺ â€calmodulin at thalamocortical synapses. Journal of Neurochemistry, 2013, 126, 565-578.	2.1	31

#	Article	IF	CITATIONS
37	Non-canonical Mechanisms of Presynaptic Kainate Receptors Controlling Glutamate Release. Frontiers in Molecular Neuroscience, 2018, 11, 128.	1.4	31
38	Metabotropic Actions of Kainate Receptors in the Control of GABA Release. Advances in Experimental Medicine and Biology, 2011, 717, 1-10.	0.8	28
39	Metabotropic Actions of Kainate Receptors in the Control of Glutamate Release in the Hippocampus. Advances in Experimental Medicine and Biology, 2011, 717, 39-48.	0.8	26
40	Cannabinoid type-1 receptor blockade restores neurological phenotypes in two models for Down syndrome. Neurobiology of Disease, 2019, 125, 92-106.	2.1	26
41	Amphetamine sensitization alters hippocampal neuronal morphology and memory and learning behaviors. Molecular Psychiatry, 2021, 26, 4784-4794.	4.1	23
42	Vitamin E prevents lipid peroxidation and iron accumulation in PLA2G6-Associated Neurodegeneration. Neurobiology of Disease, 2022, 165, 105649.	2.1	23
43	Parkin-mediated mitophagy and autophagy flux disruption in cellular models of MERRF syndrome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165726.	1.8	22
44	Cerebellar Kainate Receptor-Mediated Facilitation of Glutamate Release Requires Ca2+-Calmodulin and PKA. Frontiers in Molecular Neuroscience, 2018, 11, 195.	1.4	21
45	The Effects of Non-selective Dopamine Receptor Activation by Apomorphine in the Mouse Hippocampus. Molecular Neurobiology, 2018, 55, 8625-8636.	1.9	20
46	NMDA Receptors Containing GluN2B/2C/2D Subunits Mediate an Increase in Glutamate Release at Hippocampal CA3–CA1 Synapses. Molecular Neurobiology, 2019, 56, 1694-1706.	1.9	20
47	Kainate receptorâ€mediated depression of glutamatergic transmission involving protein kinase A in the lateral amygdala. Journal of Neurochemistry, 2012, 121, 36-43.	2.1	18
48	Mutation of the HERC 1 Ubiquitin Ligase Impairs Associative Learning in the Lateral Amygdala. Molecular Neurobiology, 2018, 55, 1157-1168.	1.9	18
49	The effects of amphetamine exposure on juvenile rats on the neuronal morphology of the limbic system at prepubertal, pubertal and postpubertal ages. Journal of Chemical Neuroanatomy, 2016, 77, 68-77.	1.0	16
50	Synaptic Plasticity and Oscillations in Alzheimer's Disease: A Complex Picture of a Multifaceted Disease. Frontiers in Molecular Neuroscience, 2021, 14, 696476.	1.4	16
51	Neonatal olfactory bulbectomy enhances locomotor activity, exploratory behavior and binding of NMDA receptors in pre-pubertal rats. Neuroscience, 2014, 259, 84-93.	1.1	15
52	Pharmacological activation of dopamine D4 receptor modulates morphine-induced changes in the expression of GAD65/67 and GABAB receptors in the basal ganglia. Neuropharmacology, 2019, 152, 22-29.	2.0	15
53	Juvenile stress causes reduced locomotor behavior and dendritic spine density in the prefrontal cortex and basolateral amygdala in Sprague–Dawley rats. Synapse, 2019, 73, e22066.	0.6	14
54	Copy number variants (CNVs): a powerful tool for iPSC-based modelling of ASD. Molecular Autism, 2020. 11. 42.	2.6	14

#	Article	IF	CITATIONS
55	Kainate receptors: from synaptic activity to disease. FEBS Journal, 2022, 289, 5074-5088.	2.2	14
56	Metabotropic actions of kainate receptors modulating glutamate release. Neuropharmacology, 2021, 197, 108696.	2.0	14
57	Caged intracellular NMDA receptor blockers for the study of subcellular ion channel function. Communicative and Integrative Biology, 2012, 5, 240-242.	0.6	13
58	Kainate Receptor-Mediated Depression of Glutamate Release Involves Protein Kinase A in the Cerebellum. International Journal of Molecular Sciences, 2019, 20, 4124.	1.8	11
59	The nicotinic agonist RJR-2403 compensates the impairment of eyeblink conditioning produced by the noncompetitive NMDA-receptor antagonist MK-801. Neuroscience Letters, 2006, 402, 102-107.	1.0	10
60	Rearrangement of the dendritic morphology of the neurons from prefrontal cortex and hippocampus after subthalamic lesion in Sprague–Dawley rats. Synapse, 2014, 68, 114-126.	0.6	10
61	Characterization of an eutherian gene cluster generated after transposon domestication identifies Bex3 as relevant for advanced neurological functions. Genome Biology, 2020, 21, 267.	3.8	10
62	Dendritic morphology of neurons in prefrontal cortex and ventral hippocampus of rats with neonatal amygdala lesion. Synapse, 2012, 66, 373-382.	0.6	9
63	Presynaptic NMDARs and astrocytes ally to control circuit-specific information flow. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13166-13168.	3.3	9
64	Stabilization of apoptotic cells: generation of zombie cells. Cell Death and Disease, 2014, 5, e1369-e1369.	2.7	7
65	HERC1 Ubiquitin Ligase Is Required for Hippocampal Learning and Memory. Frontiers in Neuroanatomy, 2020, 14, 592797.	0.9	7
66	Apomorphine effects on the hippocampus. Neural Regeneration Research, 2018, 13, 2064.	1.6	7
67	Role of Group I Metabotropic Glutamate Receptors in Spike Timing-Dependent Plasticity. International Journal of Molecular Sciences, 2022, 23, 7807.	1.8	6
68	Dimethoate accelerates the extinction of eyeblink conditioning in mice. NeuroToxicology, 2012, 33, 105-110.	1.4	5
69	Kainate receptor modulation of glutamatergic synaptic transmission in the CA2 region of the hippocampus. Journal of Neurochemistry, 2021, 158, 1083-1093.	2.1	5
70	Excitatory amino acids in neurological and neurodegenerative disorders , 2012, , 427-453.		5
71	Long-term effect of neonatal antagonism of ionotropic glutamate receptors on dendritic spines and cognitive function in rats. Journal of Chemical Neuroanatomy, 2022, 119, 102054.	1.0	5
72	The use of alert behaving mice in the study of learning and memory processes. Neurotoxicity Research, 2004, 6, 225-232.	1.3	4

#	Article	IF	CITATIONS
73	Santiago Ramã³n y Cajal and Ivan Petrovic Pavlov: their parallel scientific lives, schools and nobel prizes. Frontiers in Neuroanatomy, 2015, 9, 73.	0.9	4
74	Pavlov and Cajal: Two different pathways to a Nobel Prize. Journal of the History of the Neurosciences, 2017, 26, 257-279.	0.1	3
75	Challenges in Physiological Phenotyping of hiPSC-Derived Neurons: From 2D Cultures to 3D Brain Organoids. Frontiers in Cell and Developmental Biology, 2020, 8, 797.	1.8	3
76	Conditional self-discrimination enhances dendritic spine number and dendritic length at prefrontal cortex and hippocampal neurons of rats. Synapse, 2015, 69, 543-552.	0.6	2
77	Modeling Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes Syndrome Using Patient-Derived Induced Neurons Generated by Direct Reprogramming. Cellular Reprogramming, 2022, 24, 294-303.	0.5	2
78	Kainate receptors. Novel signaling insights. Advances in Experimental Medicine and Biology, 2011, 717, vii-xi, xiii.	0.8	1
79	Changes in mIPSCs and sIPSCs after kainate treatment: possible actions mediated by the direct activation of kainate receptors. Journal of Neurophysiology, 2006, 96, 505-505.	0.9	0
80	Addictive Drugs and Synaptic Plasticity. , 0, , .		0
81	Stabilization Of Apoptotic Cells: Generation Of Zombie Cells. Redox Biology, 2015, 5, 416.	3.9	0
82	Kainate Receptors Modulating Glutamate Release in the Cerebellum. , 2019, , .		0