Stephen D Skaper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6261/publications.pdf

Version: 2024-02-01

109 papers 6,766 citations

43 h-index

61984

81 g-index

112 all docs

112 docs citations

112 times ranked

8504 citing authors

#	Article	lF	CITATIONS
1	Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. Progress in Brain Research, 2021, 266, 1-73.	1.4	15
2	Oligodendrocyte precursor cells as a therapeutic target for demyelinating diseases. Progress in Brain Research, 2019, 245, 119-144.	1.4	46
3	A Pharmacological Rationale to Reduce the Incidence of Opioid Induced Tolerance and Hyperalgesia: A Review. Pain and Therapy, 2018, 7, 59-75.	3.2	42
4	Co-Ultramicronized Palmitoylethanolamide/Luteolin Facilitates the Development of Differentiating and Undifferentiated Rat Oligodendrocyte Progenitor Cells. Molecular Neurobiology, 2018, 55, 103-114.	4.0	18
5	Neurotrophic Factors: An Overview. Methods in Molecular Biology, 2018, 1727, 1-17.	0.9	124
6	Astrocyte/Microglia Cocultures as a Model to Study Neuroinflammation. Methods in Molecular Biology, 2018, 1727, 127-137.	0.9	22
7	Active Induction of Experimental Autoimmune Encephalomyelitis in C57BL/6 Mice. Methods in Molecular Biology, 2018, 1727, 353-360.	0.9	17
8	Culture of Rodent Cortical, Hippocampal, and Striatal Neurons. Methods in Molecular Biology, 2018, 1727, 39-47.	0.9	15
9	Culture of Neonatal Rodent Microglia, Astrocytes, and Oligodendrocytes from the Cortex, Spinal Cord, and Cerebellum. Methods in Molecular Biology, 2018, 1727, 49-61.	0.9	9
10	Culture of Rat Mesencephalic Dopaminergic Neurons and Application to Neurotoxic and Neuroprotective Agents. Methods in Molecular Biology, 2018, 1727, 107-118.	0.9	2
11	Central Nervous System Neuron-Glia co-Culture Models and Application to Neuroprotective Agents. Methods in Molecular Biology, 2018, 1727, 63-80.	0.9	5
12	Oligodendrocyte Progenitor Cell Cultures: A Model to Screen Neurotrophic Compounds for Myelin Repair. Methods in Molecular Biology, 2018, 1727, 155-166.	0.9	2
13	Cell Enumeration Assays: Application of the MTT and Sulforhodamine B Assays to Lipopolysaccharide-Stimulated Neonatal Rodent Microglia. Methods in Molecular Biology, 2018, 1727, 167-178.	0.9	2
14	An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Frontiers in Cellular Neuroscience, 2018, 12, 72.	3.7	320
15	Serum amyloid A primes microglia for ATP-dependent interleukin- $\hat{1}^2$ release. Journal of Neuroinflammation, 2018, 15, 164.	7.2	48
16	Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology, 2017, 151, 1-15.	4.4	141
17	Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons. Neuroscientist, 2017, 23, 478-498.	3.5	87
18	Degenerative Joint Diseases and Neuroinflammation. Pain Practice, 2017, 17, 522-532.	1.9	77

#	Article	IF	CITATIONS
19	Expression and Differential Responsiveness of Central Nervous System Glial Cell Populations to the Acute Phase Protein Serum Amyloid A. Scientific Reports, 2017, 7, 12158.	3.3	27
20	Impact of Inflammation on the Blood–Neural Barrier and Blood–Nerve Interface: From Review to Therapeutic Preview. International Review of Neurobiology, 2017, 137, 29-45.	2.0	22
21	Meet Our Editor-in-Chief. CNS and Neurological Disorders - Drug Targets, 2017, 16, .	1.4	0
22	Mast Cells and Glia as Targets for the Anandamide Congener Palmitoylethanolamide: an Anti-inflammatory and Neuroprotective Lipid Signaling Molecule., 2017,, 347-369.		1
23	Commentary: Fatal French Clinical Trial: What Can We Learn from What Went Wrong?. CNS and Neurological Disorders - Drug Targets, 2016, 15, 752-753.	1.4	0
24	Systematic Review of Pharmacological Properties of the Oligodendrocyte Lineage. Frontiers in Cellular Neuroscience, 2016, 10, 27.	3.7	65
25	Mast Cell - Glia Dialogue in Chronic Pain and Neuropathic Pain: Blood-Brain Barrier Implications. CNS and Neurological Disorders - Drug Targets, 2016, 15, 1072-1078.	1.4	29
26	Co-ultramicronized Palmitoylethanolamide/Luteolin Promotes the Maturation of Oligodendrocyte Precursor Cells. Scientific Reports, 2015, 5, 16676.	3.3	30
27	Ligand engagement of Toll-like receptors regulates their expression in cortical microglia and astrocytes. Journal of Neuroinflammation, 2015, 12, 244.	7.2	73
28	Commentary: Low-Grade Non-Resolving Neuroinflammation: Age Does Matter. CNS and Neurological Disorders - Drug Targets, 2015, 14, 432-433.	1.4	3
29	N-Palmitoylethanolamine and Neuroinflammation: a Novel Therapeutic Strategy of Resolution. Molecular Neurobiology, 2015, 52, 1034-1042.	4.0	105
30	Palmitoylethanolamide in Fibromyalgia: Results from Prospective and Retrospective Observational Studies. Pain and Therapy, 2015, 4, 169-178.	3.2	29
31	Reply to: "Palmitoylethanolamide: problems regarding micronization, ultra-micronization and additives―Inflammopharmacology DOI:10.1007/s10787-014-0202-3. Inflammopharmacology, 2015, 23, 127-130.	3.9	0
32	Commentary (Research Highlights: TRPV-ing up Pain for a Long Life). CNS and Neurological Disorders - Drug Targets, 2014, 13, 926-926.	1.4	1
33	Commentary (Research Highlights: WNT-erizing Against Neuropathic Pain). CNS and Neurological Disorders - Drug Targets, 2014, 13, 191-191.	1.4	0
34	Mast cells in chronic inflammation, pelvic pain and depression in women. Gynecological Endocrinology, 2014, 30, 472-477.	1.7	52
35	Mast cells, glia and neuroinflammation: partners in crime?. Immunology, 2014, 141, 314-327.	4.4	200
36	Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain. Inflammopharmacology, 2014, 22, 79-94.	3.9	85

3

#	Article	IF	Citations
37	Toll-Like Receptors 2, -3 and -4 Prime Microglia but not Astrocytes Across Central Nervous System Regions for ATP-Dependent Interleukin- $1\hat{l}^2$ Release. Scientific Reports, 2014, 4, 6824.	3.3	96
38	Intracellular Ion Channel CLIC1: Involvement in Microglia-Mediated \hat{l}^2 -Amyloid Peptide (1-42) Neurotoxicity. Neurochemical Research, 2013, 38, 1801-1808.	3.3	16
39	Glia and Mast Cells as Targets for Palmitoylethanolamide, an Anti-inflammatory and Neuroprotective Lipid Mediator. Molecular Neurobiology, 2013, 48, 340-352.	4.0	110
40	Commentary((Research Highlights)(Amyotrophic Lateral Sclerosis: Targeting the Body's Energy) Tj ETQq0 0 0 0	rgBT /Ove 1.4	rlock 10 Tf 5
41	(Commentary [Research Highlights] A Toll Road to Alzheimer Disease?). CNS and Neurological Disorders - Drug Targets, 2013, 12, 445-446.	1.4	1
42	Editorial (Hot Topic: Palmitoylethanolamide: Biochemistry, Pharmacology and Therapeutic Use of a) Tj ETQq0 0 0 rg	gBT /Over 1.4	lock 10 Tf 5 15
43	Astrocyte-Microglia Cooperation in the Expression of a Pro-Inflammatory Phenotype. CNS and Neurological Disorders - Drug Targets, 2013, 12, 608-618.	1.4	58
44	Culture and Characterization of Rat Mesencephalic Dopaminergic Neurons. Methods in Molecular Biology, 2012, 846, 91-101.	0.9	3
45	Commentary [Research Highlights (Making Sense Out of Antisense in Huntington's Disease)]. CNS and Neurological Disorders - Drug Targets, 2012, 11, 647-648.	1.4	O
46	Alzheimer's Disease and Amyloid: Culprit or Coincidence?. International Review of Neurobiology, 2012, 102, 277-316.	2.0	67
47	Mast cell–glia axis in neuroinflammation and therapeutic potential of the anandamide congener palmitoylethanolamide. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3312-3325.	4.0	95
48	Neuronal Growth-Promoting and Inhibitory Cues in Neuroprotection and Neuroregeneration. Methods in Molecular Biology, 2012, 846, 13-22.	0.9	20
49	Culture of Neonatal Rodent Microglia, Astrocytes, and Oligodendrocytes from Cortex and Spinal Cord. Methods in Molecular Biology, 2012, 846, 67-77.	0.9	30
50	The Neurotrophin Family of Neurotrophic Factors: An Overview. Methods in Molecular Biology, 2012, 846, 1-12.	0.9	295
51	Rodent Retinal Ganglion Cell Cultures. Methods in Molecular Biology, 2012, 846, 117-129.	0.9	7
52	Culture of Rodent Cortical and Hippocampal Neurons. Methods in Molecular Biology, 2012, 846, 49-56.	0.9	14
53	Endocannabinoids in nervous system health and disease: the big picture in a nutshell. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3193-3200.	4.0	83
54	Commentary Research Highlights (Amyloid β-Peptide and Alzheimer's Disease: It's All the RAGE). CNS and Neurological Disorders - Drug Targets, 2012, 11, 494-494.	1.4	0

#	Article	IF	CITATIONS
55	Commentary Research Highlights (Amyloid and Alzheimer's Disease: Easing the Load). CNS and Neurological Disorders - Drug Targets, 2012, 11, 4-4.	1.4	O
56	Commentary. CNS and Neurological Disorders - Drug Targets, 2012, 11, 192-192.	1.4	0
57	Commentary Research Highlights (Purines, Pores and Pain: Is it in Our Genes?). CNS and Neurological Disorders - Drug Targets, 2012, 11, 335-335.	1.4	O
58	Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB Journal, 2012, 26, 3103-3117.	0.5	221
59	[3H]Serotonin Release Assay Using Antigen-Stimulated Rat Peritoneal Mast Cells. Methods in Molecular Biology, 2012, 846, 333-341.	0.9	3
60	Isolation and Culture of Rat Cone Photoreceptor Cells. Methods in Molecular Biology, 2012, 846, 147-158.	0.9	11
61	Compartmented Chambers for Studying Neurotrophic Factor Action. Methods in Molecular Biology, 2012, 846, 213-222.	0.9	5
62	Indirect Immunofluorescence Staining of Cultured Neural Cells. Methods in Molecular Biology, 2012, 846, 235-246.	0.9	6
63	Amyloid \hat{l}^2 -Peptide Neurotoxicity Assay Using Cultured Rat Cortical Neurons. Methods in Molecular Biology, 2012, 846, 57-65.	0.9	5
64	Central Nervous System Neuron-Glia Co-culture Models. Methods in Molecular Biology, 2012, 846, 79-89.	0.9	9
65	Culture of Purified Glial Cell Populations from Optic Nerve. Methods in Molecular Biology, 2012, 846, 131-145.	0.9	1
66	Culture of Rat Retina Pigmented Epithelial Cells. Methods in Molecular Biology, 2012, 846, 159-166.	0.9	1
67	Commentary (Research Highlights). CNS and Neurological Disorders - Drug Targets, 2011, 10, 295-295.	1.4	1
68	Commentary (Research Highlights). CNS and Neurological Disorders - Drug Targets, 2011, 10, 1-1.	1.4	0
69	Ion Channels on Microglia: Therapeutic Targets for Neuroprotection. CNS and Neurological Disorders - Drug Targets, 2011, 10, 44-56.	1.4	92
70	TASTPM Mice Expressing Amyloid Precursor Protein and Presenilin-1 Mutant Transgenes Are Sensitive to Î ³ -Secretase Modulation and Amyloid-Î ² ₄₂ Lowering by GSM-10h. Neurodegenerative Diseases, 2011, 8, 15-24.	1.4	18
71	Apoptosis-Associated Tyrosine Kinase and Neuronal Cell Death. Neurochemical Research, 2010, 35, 588-597.	3.3	9
72	Transgenic Mouse Models of Parkinsons Disease and Huntingtons Disease. CNS and Neurological Disorders - Drug Targets, 2010, 9, 455-470.	1.4	9

#	Article	IF	Citations
73	The P2X ₇ purinergic receptor: from physiology to neurological disorders. FASEB Journal, 2010, 24, 337-345.	0.5	305
74	Microglia as a Target for Inflammatory Processes and Neuroprotective Strategies. American Journal of Neuroprotection and Neuroregeneration, 2010, 2, 35-47.	0.1	2
75	Receptors as a Transducer in the Co-Occurrence of Neurological/Psychiatric and Cardiovascular Disorders: A Hypothesis. Cardiovascular Psychiatry and Neurology, 2009, 2009, 1-5.	0.8	7
76	P2 Receptors in Neurological and Cardiovascular Disorders. Cardiovascular Psychiatry and Neurology, 2009, 2009, 1-13.	0.8	14
77	Oligodendrocytes are a Novel Source of Amyloid Peptide Generation. Neurochemical Research, 2009, 34, 2243-2250.	3.3	32
78	Potentiation by histamine of synaptically mediated excitotoxicity in cultured hippocampal neurones: a possible role for mast cells. Journal of Neurochemistry, 2008, 76, 47-55.	3.9	56
79	Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. Journal of Neurochemistry, 2008, 77, 94-102.	3.9	22
80	Aβ1–42 reduces synapse number and inhibits neurite outgrowth in primary cortical and hippocampal neurons: A quantitative analysis. Journal of Neuroscience Methods, 2008, 175, 96-103.	2.5	51
81	The Biology of Neurotrophins, Signalling Pathways, and Functional Peptide Mimetics of Neurotrophins and their Receptors. CNS and Neurological Disorders - Drug Targets, 2008, 7, 46-62.	1.4	276
82	MEK inhibition exacerbates ischemic calcium imbalance and neuronal cell death in rat cortical cultures. European Journal of Pharmacology, 2006, 553, 18-27.	3.5	14
83	P2X7 receptors on microglial cells mediate injury to cortical neurons in vitro. Glia, 2006, 54, 234-242.	4.9	85
84	MAPK-activated Protein Kinase 2 Deficiency in Microglia Inhibits Pro-inflammatory Mediator Release and Resultant Neurotoxicity. Journal of Biological Chemistry, 2006, 281, 23658-23667.	3.4	148
85	Dopamine D2 and D3 receptor agonists limit oligodendrocyte injury caused by glutamate oxidative stress and oxygen/glucose deprivation. Glia, 2005, 52, 336-343.	4.9	69
86	Neuronal Growth-Promoting and Inhibitory Cues in Neuroprotection and Neuroregeneration. Annals of the New York Academy of Sciences, 2005, 1053, 376-385.	3.8	49
87	Excitatory amino acid induced oligodendrocyte cell death <i>inâ€∫vitro</i> : receptorâ€dependent and â€independent mechanisms. Journal of Neurochemistry, 2004, 90, 1173-1185.	3.9	80
88	Mitogen and stress response kinase-1 (MSK1) mediates excitotoxic induced death of hippocampal neurones. Journal of Neurochemistry, 2004, 86, 25-32.	3.9	42
89	A dimeric version of the short N-cadherin binding motif HAVDI promotes neuronal cell survival by activating an N-cadherin/fibroblast growth factor receptor signalling cascade. Molecular and Cellular Neurosciences, 2004, 26, 17-23.	2.2	40
90	Glycogen synthase kinase-3 inhibitors protect central neurons against excitotoxicity. NeuroReport, 2003, 14, 1467-1470.	1.2	50

#	Article	IF	Citations
91	Mast Cell Activation Causes Delayed Neurodegeneration in Mixed Hippocampal Cultures via the Nitric Oxide Pathway. Journal of Neurochemistry, 2002, 66, 1157-1166.	3.9	53
92	Melatonin protects against 6â€OHDAâ€induced neurotoxicity in rats: a role for mitochondrial complex I activity. FASEB Journal, 2001, 15, 164-170.	0.5	187
93	Upregulation of death pathway molecules in rat cerebellar granule neurons undergoing apoptosis. Neuroscience Letters, 2001, 302, 113-116.	2.1	28
94	Mast cells differentially express and release active high molecular weight neurotrophins. Molecular Brain Research, 2001, 97, 177-185.	2.3	85
95	Nerve Growth Factor. Molecular Neurobiology, 2001, 24, 183-200.	4.0	53
96	Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. Journal of Neurochemistry, 2001, 77, 94-102.	3.9	353
97	Kainic acid induces selective mitochondrial oxidative phosphorylation enzyme dysfunction in cerebellar granule neurons: protective effects of melatonin and GSH ethyl ester. FASEB Journal, 2001, 15, 1786-1788.	0.5	34
98	Identification of an N-cadherin Motif That Can Interact with the Fibroblast Growth Factor Receptor and Is Required for Axonal Growth. Journal of Biological Chemistry, 2001, 276, 43879-43886.	3.4	129
99	Neurotrophic Molecules: Strategies for Designing Effective Therapeutic Molecules in Neurodegeneration. Molecular and Cellular Neurosciences, 1998, 12, 179-193.	2.2	98
100	Melatonin prevents the delayed death of hippocampal neurons induced by enhanced excitatory neurotransmission and the nitridergic pathway. FASEB Journal, 1998, 12, 725-731.	0.5	78
101	Melatonin maintains glutathione homeostasis in kainic acidâ€exposed rat brain tissues. FASEB Journal, 1997, 11, 1309-1315.	0.5	96
102	Nerve growth factor: from neurotrophin to neurokine. Trends in Neurosciences, 1996, 19, 514-520.	8.6	650
103	Inflammatory Mediator Stimulation of Astrocytes and Meningeal Fibroblasts Induces Neuronal Degeneration via the Nitridergic Pathway. Journal of Neurochemistry, 1995, 64, 266-276.	3.9	91
104	Nerve Growth Factor and Autoimmune Diseases. Autoimmunity, 1994, 19, 141-150.	2.6	129
105	Brain-derived neurotrophic factor selectively rescues mesencephalic dopaminergic neurons from 2,4,5-trihydroxyphenylalanine-induced injury. Journal of Neuroscience Research, 1993, 34, 478-487.	2.9	54
106	Differences in induction of c-fos transcription by cholera toxin-derived cyclic AMP and Ca2+ signals in astrocytes and 3T3 fibroblasts. Experimental Cell Research, 1991, 194, 210-217.	2.6	27
107	An automated colorimetric microassay for neuronotrophic factors. Developmental Brain Research, 1986, 25, 191-198.	1.7	211
108	An automated colorimetric microassay for neuronotrophic factors. Brain Research, 1986, 390, 191-198.	2.2	46

ARTICLE IF CITATIONS

109 Glycogen Synthase Kinase 3: Role in Neurodegeneration and Neuroprotection., 0, , 173-187. 0