Susana C Gonçalves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/626099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extinction risk and threats to plants and fungi. Plants People Planet, 2020, 2, 389-408.	3.3	242
2	Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils. Mycorrhiza, 2009, 19, 221-230.	2.8	44
3	Genetic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal. Mycorrhiza, 2007, 17, 677-686.	2.8	42
4	Large and variable genome size unrelated to serpentine adaptation but supportive of cryptic sexuality in Cenococcum geophilum. Mycorrhiza, 2014, 24, 13-20.	2.8	37
5	Natural woodlands hold more diverse, abundant, and unique biota than novel anthropogenic forests: a multi-group assessment. European Journal of Forest Research, 2019, 138, 461-472.	2.5	37
6	Include all fungi in biodiversity goals. Science, 2021, 373, 403-403.	12.6	36
7	Effects of nickel hyperaccumulation in Alyssum pintodasilvae on model arthropods representatives of two trophic levels. Plant and Soil, 2007, 293, 177-188.	3.7	34
8	International collaboration between collectionsâ€based institutes for halting biodiversity loss and unlocking the useful properties of plants and fungi. Plants People Planet, 2020, 2, 515-534.	3.3	25
9	A Ni hyperaccumulator and a congeneric non-accumulator reveal equally effective defenses against herbivory. Science of the Total Environment, 2014, 466-467, 11-15.	8.0	17
10	Effect of root age on the allocation of metals, amino acids and sugars in different cell fractions of the perennial grass Paspalum notatum (bahiagrass). Plant Physiology and Biochemistry, 2011, 49, 1442-1447.	5.8	16
11	Validation of standards suitable for genome size estimation of fungi. Journal of Microbiological Methods, 2017, 142, 76-78.	1.6	13
12	In Colombia the Eurasian fungus <i>Amanita muscaria</i> is expanding its range into native, tropical <i>Quercus humboldtii</i> forests. Mycologia, 2019, 111, 758-771.	1.9	10
13	Aquatic fungi: largely neglected targets for conservation. Frontiers in Ecology and the Environment, 2022, 20, 207-209.	4.0	3
14	Macrofungal conservation in Canada and target species for assessment: a starting point. Facets, 2022, 7, 448-463.	2.4	2
15	Phytoremediation in Portugal. Methods in Biotechnology, 2007, , 405-421.	0.2	0