
Wayne R Giles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6260923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Editorial: Regulatory Mechanisms of Ca2+ Activated Ion Channels and Their Impact on Physiological/Pathophysiological Function. Frontiers in Physiology, 2022, 13, 876327.	1.3	1
2	Frequency-Dependent Properties of the Hyperpolarization-Activated Cation Current, If, in Adult Mouse Heart Primary Pacemaker Myocytes. International Journal of Molecular Sciences, 2022, 23, 4299.	1.8	1
3	A molecular complex of Ca _v 1.2/CaMKK2/CaMK1a in caveolae is responsible for vascular remodeling via excitation–transcription coupling. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117435119.	3.3	15
4	Arrhythmogenic influence of mutations in a myocyte-based computational model of the pulmonary vein sleeve. Scientific Reports, 2022, 12, 7040.	1.6	4
5	Machine Learned Cellular Phenotypes in Cardiomyopathy Predict Sudden Death. Circulation Research, 2021, 128, 172-184.	2.0	35
6	Swelling-activated ClC-3 activity regulates prostaglandin E2 release in human OUMS-27 chondrocytes. Biochemical and Biophysical Research Communications, 2021, 537, 29-35.	1.0	7
7	Physiological Roles of the Rapidly Activated Delayed Rectifier K+ Current in Adult Mouse Heart Primary Pacemaker Activity. International Journal of Molecular Sciences, 2021, 22, 4761.	1.8	6
8	Immediate and Delayed Response of Simulated Human Atrial Myocytes to Clinically-Relevant Hypokalemia. Frontiers in Physiology, 2021, 12, 651162.	1.3	4
9	A computational method for identifying an optimal combination of existing drugs to repair the action potentials of SQT1 ventricular myocytes. PLoS Computational Biology, 2021, 17, e1009233.	1.5	5
10	Mechanisms of flecainide induced negative inotropy: An in silico study. Journal of Molecular and Cellular Cardiology, 2021, 158, 26-37.	0.9	2
11	The T-type Calcium Channel Cav3.1 in Y79 Retinoblastoma Cells is Regulated by the Epidermal Growth Factor Receptor via the MAPK Signaling Pathway. Current Eye Research, 2021, , 1-10.	0.7	3
12	Roles of LRRC26 as an auxiliary γ1-subunit of large-conductance Ca ²⁺ -activated K ⁺ channels in bronchial smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L366-L375.	1.3	7
13	Populations of in silico myocytes and tissues reveal synergy of multiatrialâ€predominant K ⁺ â€current block in atrial fibrillation. British Journal of Pharmacology, 2020, 177, 4497-4515.	2.7	23
14	Computational translation of drug effects from animal experiments to human ventricular myocytes. Scientific Reports, 2020, 10, 10537.	1.6	9
15	Physiological Effects of the Electrogenic Current Generated by the Na ⁺ /K ⁺ Pump in Mammalian Articular Chondrocytes. Bioelectricity, 2020, 2, 258-268.	0.6	6
16	K+ and Ca2+ Channels Regulate Ca2+ Signaling in Chondrocytes: An Illustrated Review. Cells, 2020, 9, 1577.	1.8	16
17	Transient outward K ⁺ current can strongly modulate action potential duration and initiate alternans in the human atrium. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H527-H542.	1.5	20
18	ATP increases [Ca ²⁺] _i and activates a Ca ²⁺ â€dependent Cl ^{â^'} current in rat ventricular fibroblasts. Experimental Physiology, 2018, 103, 666-682.	0.9	1

WAYNE R GILES

#	Article	IF	CITATIONS
19	Pro-arrhythmic effects of low plasma [K +] in human ventricle: An illustrated review. Trends in Cardiovascular Medicine, 2018, 28, 233-242.	2.3	16
20	The Resting Potential and K+ Currents in Primary Human Articular Chondrocytes. Frontiers in Physiology, 2018, 9, 974.	1.3	7
21	Hypoxic stress upregulates K _{ir} 2.1 expression by a pathway including hypoxic-inducible factor-1α and dynamin2 in brain capillary endothelial cells. American Journal of Physiology - Cell Physiology, 2018, 315, C202-C213.	2.1	10
22	HIF-1α-dynamin2-Kir2.1 pathway contributes to cell proliferation in brain capillary endothelial cells under hypoxic stress. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-2-25.	0.0	0
23	Identification of a new splice variant of largeâ€conductance Ca 2+ â€activated K + (BK) channel α subunit from human chondrocyte. FASEB Journal, 2018, 32, 750.27.	0.2	Ο
24	A Mathematical Model of Plasma Membrane Electrophysiology of a Brain Capillary Pericyte: Investigating Pericyte Contribution to the Electrical Properties of the Capillary Network. FASEB Journal, 2018, 32, 712.10.	0.2	0
25	Ventricular Microanatomy, Arrhythmias, and the Electrochemical Driving Force for Na +. Circulation: Arrhythmia and Electrophysiology, 2017, 10, e004955.	2.1	Ο
26	No fuzzy space for intracellular Na+ in healthy ventricular myocytes. Journal of General Physiology, 2017, 149, 683-687.	0.9	3
27	Cardiac action potential repolarization revisited: early repolarization shows allâ€orâ€none behaviour. Journal of Physiology, 2017, 595, 6599-6612.	1.3	23
28	Synergistic Anti-arrhythmic Effects in Human Atria with Combined Use of Sodium Blockers and Acacetin. Frontiers in Physiology, 2017, 8, 946.	1.3	58
29	Rigorous Phenotyping of Cardiac iPSC Preparations Requires Knowledge of Their Resting Potential(s). Biophysical Journal, 2016, 110, 278-280.	0.2	19
30	A computational model predicts adjunctive pharmacotherapy for cardiac safety via selective inhibition of the late cardiac Na current. Journal of Molecular and Cellular Cardiology, 2016, 99, 151-161.	0.9	22
31	A New Splice Variant of Large Conductance Ca2+-activated K+ (BK) Channel α Subunit Alters Human Chondrocyte Function. Journal of Biological Chemistry, 2016, 291, 24247-24260.	1.6	22
32	Editorial commentary: This sodium current may be late, but it is important. Trends in Cardiovascular Medicine, 2016, 26, 123-125.	2.3	6
33	Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes. PLoS ONE, 2016, 11, e0167060.	1.1	7
34	Cardiac late Na+ current: Proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress. Heart Rhythm, 2015, 12, 440-448.	0.3	125
35	Orai1–Orai2 complex is involved in store-operated calcium entry in chondrocyte cell lines. Cell Calcium, 2015, 57, 337-347.	1.1	41
36	A computational modelling approach combined with cellular electrophysiology data provides insights into the therapeutic benefit of targeting the late Na ⁺ current. Journal of Physiology, 2015, 593, 1429-1442.	1.3	22

WAYNE R GILES

#	Article	IF	CITATIONS
37	David Yue (1957–2014). Journal of Physiology, 2015, 593, 1325-1325.	1.3	0
38	The CIC-7 Chloride Channel Is Downregulated by Hypoosmotic Stress in Human Chondrocytes. Molecular Pharmacology, 2015, 88, 113-120.	1.0	29
39	Na+ current expression in human atrial myofibroblasts: identity and functional roles. Frontiers in Physiology, 2014, 5, 275.	1.3	28
40	In silico assessment of drug safety in human heart applied to late sodium current blockers. Channels, 2013, 7, 249-262.	1.5	27
41	Ca ²⁺ Entry Through TRP-C Channels Regulates Fibroblast Biology in Chronic Atrial Fibrillation. Circulation, 2012, 126, 2039-2041.	1.6	13
42	Twoâ€pore domain K ⁺ channels regulate membrane potential of isolated human articular chondrocytes. Journal of Physiology, 2011, 589, 5071-5089.	1.3	29
43	Repolarization of the mammalian heart action potential is modulated by changes in osmotic strength. Cardiovascular Research, 2011, 91, 376-377.	1.8	Ο
44	Measurement of the membrane potential in small cells using patch clamp methods. Channels, 2011, 5, 530-537.	1.5	33
45	lonic mechanisms of electrophysiological properties and repolarization abnormalities in rabbit Purkinje fibers. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1806-H1813.	1.5	55
46	Voltage-gated K+currents in mouse articular chondrocytes regulate membrane potential. Channels, 2010, 4, 179-191.	1.5	24
47	Effects of Applied Stretch on Native and Recombinant Cardiac Na+ Currents. , 2010, , 169-184.		1
48	Electrotonic Coupling between Human Atrial Myocytes and Fibroblasts Alters Myocyte Excitability and Repolarization. Biophysical Journal, 2009, 97, 2179-2190.	0.2	122
49	Natriuretic peptide C receptor signalling in the heart and vasculature. Journal of Physiology, 2008, 586, 353-366.	1.3	175
50	Contributions of HERG <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si92.gif" overflow="scroll"> <mml:msup> <mml:mrow> <mml:mi mathvariant="normal">K </mml:mi </mml:mrow> <mml:mrow> <mml:mo> + </mml:mo> </mml:mrow> current to repolarization of the human ventricular action potential. Progress in Biophysics and</mml:msup></mml:math>	p> 1/ mml:	ma tio
51	Molecular Biology, 2008, 96, 357-376. Mathematical simulations of ligand-gated and cell-type specific effects on the action potential of human atrium. Progress in Biophysics and Molecular Biology, 2008, 98, 161-170.	1.4	59
52	Spatial distributions of Kv4 channels and KChip2 isoforms in the murine heart based on laser capture microdissection. Cardiovascular Research, 2007, 73, 739-749.	1.8	35
53	A Mathematical Model of Electrotonic Interactions between Ventricular Myocytes and Fibroblasts. Biophysical Journal, 2007, 92, 4121-4132.	0.2	203
54	Evidence of intercellular coupling between co-cultured adult rabbit ventricular myocytes and myofibroblasts. Journal of Physiology, 2007, 583, 225-236.	1.3	129

WAYNE R GILES

#	Article	IF	CITATIONS
55	Hyposmotic Challenge Inhibits Inward Rectifying K + Channels in Cerebral Arterial Smooth Muscle Cells. FASEB Journal, 2007, 21, A520.	0.2	0
56	Cardiac fibroblasts: friend or foe?. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1015-H1026.	1.5	367
57	Contributions of inwardly rectifying K + currents to repolarization assessed using mathematical models of human ventricular myocytes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 1207-1222.	1.6	33
58	Comparison of contraction and calcium handling between right and left ventricular myocytes from adult mouse heart: a role for repolarization waveform. Journal of Physiology, 2006, 571, 131-146.	1.3	99
59	K+ Currents Activated by Depolarization in Cardiac Fibroblasts. Biophysical Journal, 2005, 88, 3924-3935.	0.2	76
60	A rapidly activating delayed rectifier K+ current regulates pacemaker activity in adult mouse sinoatrial node cells. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1757-H1766.	1.5	74
61	Changes in extracellular K+concentration modulate contractility of rat and rabbit cardiac myocytes via the inward rectifier K+currentIK1. Journal of Physiology, 2004, 556, 773-790.	1.3	44
62	Electrophysiological evidence for a gradient of G protein-gated K+ current in adult mouse atria. British Journal of Pharmacology, 2003, 140, 576-584.	2.7	51
63	Resting Membrane Potential Regulates Na + –Ca 2+ Exchangeâ€Mediated Ca 2+ Overload during Hypoxia–Reoxygenation in Rat Ventricular Myocytes. Journal of Physiology, 2003, 550, 889-898.	1.3	58
64	Mathematical Model of the Rapidly Activating Delayed Rectifier Potassium Current IKr in Rabbit Sinoatrial Node. Journal of Cardiovascular Electrophysiology, 2002, 13, 1131-1140.	0.8	16
65	Parasympathetic modulation of sinoatrial node pacemaker activity in rabbit heart: a unifying model. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H2221-H2244.	1.5	69
66	The isolated working mouse heart: methodological considerations. Pflugers Archiv European Journal of Physiology, 1999, 437, 979-985.	1.3	55
67	A model of stimulus frequency effects on the rabbit atrial myocyte. , 1992, , .		0