Stéphane Célérier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/626085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lon Implantation Enhanced Exfoliation Efficiency of V ₂ AlC Single Crystals: Implications for Large V ₂ CT <i>_z</i> Nanosheet Production. ACS Applied Nano Materials, 2022, 5, 8029-8037.	2.4	1
2	Plasmon spectroscopy for the determination of Ti ₃ C ₂ T _x MXene few layer stacks architecture. 2D Materials, 2022, 9, 035017.	2.0	2
3	lon Implantation as an Approach for Structural Modifications and Functionalization of Ti ₃ C ₂ T _{<i>x</i>} MXenes. ACS Nano, 2021, 15, 4245-4255.	7.3	37
4	A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter, 2021, 4, 1224-1251.	5.0	180
5	One MAX phase, different MXenes: A guideline to understand the crucial role of etching conditions on Ti3C2Tx surface chemistry. Applied Surface Science, 2020, 530, 147209.	3.1	172
6	Electronic Structure Sensitivity to Surface Disorder and Nanometer-Scale Impurity of 2D Titanium Carbide MXene Sheets as Revealed by Electron Energy-Loss Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 27071-27081.	1.5	9
7	On a Two-Dimensional MoS ₂ /Mo ₂ CT _x Hydrogen Evolution Catalyst Obtained by the Topotactic Sulfurization of Mo ₂ CT _x MXene. Journal of the Electrochemical Society, 2020, 167, 124507.	1.3	26
8	MXene Supported Cobalt Layered Double Hydroxide Nanocrystals: Facile Synthesis Route for a Synergistic Oxygen Evolution Reaction Electrocatalyst. Advanced Materials Interfaces, 2019, 6, 1901328.	1.9	66
9	Upgrading of furfural to biofuel precursors <i>via</i> aldol condensation with acetone over magnesium hydroxide fluorides MgF _{2â^'x} (OH) _x . Catalysis Science and Technology, 2019, 9, 5793-5802.	2.1	12
10	Hydration of Ti ₃ C ₂ T <i>_x</i> MXene: An Interstratification Process with Major Implications on Physical Properties. Chemistry of Materials, 2019, 31, 454-461.	3.2	70
11	Glycerol dehydration to hydroxyacetone in gas phase over copper supported on magnesium oxide (hydroxide) fluoride catalysts. Applied Catalysis A: General, 2018, 557, 135-144.	2.2	39
12	Mixed Ba1â^'xLaxF2+x fluoride materials as catalyst for the gas phase fluorination of 2-chloropyridine by HF. Applied Catalysis B: Environmental, 2017, 204, 107-118.	10.8	9
13	A new etching environment (FeF ₃ /HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs.Âwater. Journal of Materials Chemistry A, 2017, 5, 22012-22023.	5.2	227
14	Site-projected electronic structure of two-dimensional Ti ₃ C ₂ MXene: the role of the surface functionalization groups. Physical Chemistry Chemical Physics, 2016, 18, 30946-30953.	1.3	121
15	Spectroscopic evidence in the visible-ultraviolet energy range of surface functionalization sites in the multilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi> Ti </mml:mi> <mml:mathvariant="normal"> C <mml:mn> 2 </mml:mn> </mml:mathvariant="normal"></mml:msub> </mml:mrow> </mml:math> MXene.	nn> ß ≰/mm	l:m͡/ə
16	Physical Review 6, 2015, 51, . Inorganic hydroxide fluorides as solid catalysts for acylation of 2-methylfuran by acetic anhydride. Applied Catalysis B: Environmental, 2015, 168-169, 515-523.	10.8	15
17	Promising heterogeneous catalytic systems based on metal fluorides and oxide hydroxide fluorides: A short review. Catalysis Communications, 2015, 67, 26-30.	1.6	16
18	Alkylation of thiophenic compounds over heteropoly acid H3PW12O40 supported on MgF2. Applied Catalysis B: Environmental, 2014, 152-153, 241-249.	10.8	25

#	Article	IF	CITATIONS
19	High specific surface area metal fluorides as catalysts for the fluorination of 2-chloropyridine by HF. Applied Catalysis A: General, 2013, 453, 20-27.	2.2	25
20	Catalytic fluorination of 2-chloropyridine over metal oxide catalysts in gas phase in the presence of HF. Applied Catalysis A: General, 2012, 413-414, 149-156.	2.2	5
21	Catalytic fluorination of dichloromethylbenzene by HF in liquid phase. Preparation of fluorinated building blocks. Journal of Fluorine Chemistry, 2012, 134, 103-106.	0.9	6
22	Catalytic fluorination of 1,1,1-trifluoro-2-chloro-ethane in the presence of oxygen over chromium based catalyst doped or not by zinc supported over partially fluorinated alumina. Journal of Fluorine Chemistry, 2011, 132, 1262-1265.	0.9	4
23	Catalytic Fluorination of Various Chlorinated Hydrocarbons by HF and a Chromium Based Catalyst: Effect of the Presence of Zinc. Catalysis Letters, 2010, 138, 215-223.	1.4	17
24	New synthesis of pure Ce x Zr1â^'x O2 mixed oxides (0Ââ‰ÂxÂâ‰Â1) by an epoxide sol–gel method. Journal o Sol-Gel Science and Technology, 2010, 54, 220-231.	f _{1.1}	5
25	Selective fluorination of substituted trichloromethyl benzenes by HF in liquid phase: Preparation of fluorinated building blocks. Journal of Fluorine Chemistry, 2010, 131, 1241-1246.	0.9	13
26	Fluorination of 2-chloropyridine over metal oxide catalysts as new catalytic fluorination systems. Catalysis Communications, 2010, 12, 151-153.	1.6	13
27	Effects of Water Uptake on the Inherently Oxygen-Deficient Compounds Ln ₂₆ O ₂₇ â–¡(BO ₃) ₈ (Ln = La, Nd). Inorganic Chemistry, 2007, 46, 9961-9967.	1.9	19
28	Incorporation of Water and Fast Proton Conduction in the Inherently Oxygen-Deficient Compound La26O27â—¡(BO3)8. Advanced Materials, 2007, 19, 867-870.	11.1	30
29	Water incorporation into the (Ba1â^'xLax)2In2O5+xâ-j1â^'x (Oâ‰ ¤ <0.6) system. Solid State Ionics, 2007, 178, 1353-1359.	' 1.3	13
30	New chemical route based on sol–gel process for the synthesis of oxyapatite La9.33Si6O26. Ceramics International, 2006, 32, 271-276.	2.3	67
31	Synthesis of La9.33Si6O26 Pore–Solid Nanoarchitectures via Epoxide-Driven Sol–Gel Chemistry. Advanced Materials, 2006, 18, 615-618.	11.1	52
32	Synthesis by sol–gel route of oxyapatite powders for dense ceramics: Applications as electrolytes for solid oxide fuel cells. Journal of the European Ceramic Society, 2005, 25, 2665-2668.	2.8	53