
Ahmed Ali Mosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6259908/publications.pdf Version: 2024-02-01

Δημερ Διι Μοςλ

#	Article	IF	CITATIONS
1	Manganese oxide-modified biochar: production, characterization and applications for the removal of pollutants from aqueous environments - a review. Bioresource Technology, 2022, 346, 126581.	4.8	60
2	Physiological Adaptation of Three Wild Halophytic Suaeda Species: Salt Tolerance Strategies and Metal Accumulation Capacity. Plants, 2022, 11, 537.	1.6	12
3	Ecotoxicological assessment of toxic elements contamination in mangrove ecosystem along the Red Sea coast, Egypt. Marine Pollution Bulletin, 2022, 176, 113446.	2.3	11
4	Functional group substitutions influence the binding of benzophenone-type UV filters with DNA. Chemosphere, 2022, 299, 134490.	4.2	6
5	Removal of toxic elements from aqueous environments using nano zero-valent iron- and iron oxide-modified biochar: a review. Biochar, 2022, 4, 1.	6.2	54
6	Contributions of partition and adsorption to polycyclic aromatic hydrocarbons sorption by fractionated soil at different particle sizes. Chemosphere, 2022, 301, 134715.	4.2	23
7	Catalyzed degradation of polycyclic aromatic hydrocarbons by recoverable magnetic chitosan immobilized laccase from Trametes versicolor. Chemosphere, 2022, 301, 134753.	4.2	27
8	Nitrogen addition enhanced the polycyclic aromatic hydrocarbons dissipation through increasing the abundance of related degrading genes in the soils. Journal of Hazardous Materials, 2022, 435, 129034.	6.5	19
9	Modified and pristine biochars for remediation of chromium contamination in soil and aquatic systems. Chemosphere, 2022, 303, 134942.	4.2	26
10	Biochar for remediation of alkaline soils contaminated with toxic elements. , 2022, , 223-240.		0
11	The living cells and elemental synthesis: New insights. Environment Biodiversity and Soil Security, 2021, .	0.1	0
12	Planning for disposal of COVID-19 pandemic wastes in developing countries: a review of current challenges. Environmental Monitoring and Assessment, 2021, 193, 592.	1.3	21
13	Bio-Nano Fertilizers Preparation Using a Fully-Automated Apparatus: A Case Study of Nano-Selenium. Environment Biodiversity and Soil Security, 2021, .	0.1	1
14	In-situ and ex-situ remediation of potentially toxic elements by humic acid extracted from different feedstocks: Experimental observations on a contaminated soil subjected to long-term irrigation with sewage effluents. Environmental Technology and Innovation, 2021, 23, 101599.	3.0	15
15	Double Coating as a Novel Technology for Controlling Urea Dissolution in Soil: A Step toward Improving the Sustainability of Nitrogen Fertilization Approaches. Sustainability, 2021, 13, 10707.	1.6	0
16	Biochar modulates mineral nitrogen dynamics in soil and terrestrial ecosystems: A critical review. Chemosphere, 2021, 278, 130378.	4.2	42
17	Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. Journal of Hazardous Materials, 2021, 419, 126421.	6.5	65
18	Ecological Risk Assessment of Potential Toxic Elements in Salt Marshes on the East Coast of the Red Sea: Differential Physiological Responses and Adaptation Capacities of Dominant Halophytes. Sustainability, 2021, 13, 11282.	1.6	4

Ahmed Ali Mosa

#	Article	IF	CITATIONS
19	Genotoxic and Anatomical Deteriorations Associated with Potentially Toxic Elements Accumulation in Water Hyacinth Grown in Drainage Water Resources. Sustainability, 2020, 12, 2147.	1.6	13
20	Biochar-supported natural zeolite composite for recovery and reuse of aqueous phosphate and humate: Batch sorption–desorption and bioassay investigations. Environmental Technology and Innovation, 2020, 19, 100807.	3.0	32
21	Agro-environmental applications of humic substances: A critical review. Egyptian Journal of Soil Science, 2020, .	0.1	7
22	Soil and Air Pollution in the Era of COVID-19: A Global Issue. Egyptian Journal of Soil Science, 2020, .	0.1	3
23	Multicavity triethylenetetramine-chitosan/alginate composite beads for enhanced Cr(VI) removal. Journal of Cleaner Production, 2019, 231, 733-745.	4.6	120
24	Highly efficient removal of Cr(VI) and Cu(II) by biochar derived from Artemisia argyi stem. Environmental Science and Pollution Research, 2019, 26, 13221-13234.	2.7	61
25	Treatment of landfill leachate RO concentration by Iron–carbon micro–electrolysis (ICME) coupled with H ₂ O ₂ with emphasis on convex optimization method. Environmental Pollutants and Bioavailability, 2019, 31, 49-55.	1.3	13
26	Scavenging effect of oxidized biochar against the phytotoxicity of lead ions on hydroponically grown chicory: An anatomical and ultrastructural investigation. Ecotoxicology and Environmental Safety, 2019, 170, 363-374.	2.9	33
27	Sorption of Pb (II) onto <1â€Î¼m effective diameter clay minerals extracted from different soils of the Loess Plateau, China. Geoderma, 2019, 337, 1058-1066.	2.3	18
28	Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. Journal of Cleaner Production, 2018, 180, 437-449.	4.6	278
29	Functionalized biochar derived from heavy metal rich feedstock: Phosphate recovery and reusing the exhausted biochar as an enriched soil amendment. Chemosphere, 2018, 198, 351-363.	4.2	78
30	Sorption of lead ions onto oxidized bagasse-biochar mitigates Pb-induced oxidative stress on hydroponically grown chicory: Experimental observations and mechanisms. Chemosphere, 2018, 208, 887-898.	4.2	56
31	Nanofertilizers vs. Biofertilizers: New Insights. Environment Biodiversity and Soil Security, 2018, 2, 40-50.	0.1	38
32	Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions. Chemosphere, 2017, 169, 609-617.	4.2	76
33	Sorption of heavy metal ions onto crayfish shell biochar: Effect of pyrolysis temperature, pH and ionic strength. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 114-121.	2.7	101
34	The Rhizosphere and Plant Nutrition Under Climate Change. , 2017, , 275-308.		17
35	Chemical activation of hickory and peanut hull hydrochars for removal of lead and methylene blue from aqueous solutions. Chemical Speciation and Bioavailability, 2017, 29, 197-204.	2.0	53
36	Chemo-mechanical modification of cottonwood for Pb2+ removal from aqueous solutions: Sorption mechanisms and potential application as biofilter in drip-irrigation. Chemosphere, 2016, 161, 1-9.	4.2	28

Ahmed Ali Mosa

#	Article	IF	CITATIONS
37	Biochar filters reduced the toxic effects of nickel on tomato (Lycopersicon esculentum L.) grown in nutrient film technique hydroponic system. Chemosphere, 2016, 149, 254-262.	4.2	56
38	A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 2016, 46, 406-433.	6.6	945
39	Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead. Bioresource Technology, 2015, 181, 13-17.	4.8	325
40	Fertigation of humic substances improves yield and quality of broccoli and nutrient retention in a sandy soil. Journal of Plant Nutrition and Soil Science, 2012, 175, 273-281.	1.1	41
41	Chemically Modified Crop Residues as a Low-Cost Technique for the Removal of Heavy Metal Ions from Wastewater. Water, Air, and Soil Pollution, 2011, 217, 637-647.	1.1	32
42	Optimum time for phosphorus fertilization on Egyptian alluvial soil. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2009, 57, 363-370.	0.2	2
43	Evaluation of humic substances fertigation through surface and subsurface drip irrigation systems on potato grown under Egyptian sandy soil conditions. Agricultural Water Management, 2009, 96, 1218-1222.	2.4	58
44	Isoenzyme polymorphism and segregation in isolates ofPhytophthora infestansfrom Japan. Plant Pathology, 1993, 42, 26-34.	1.2	30
45	Role of Air Flow on Changing Soil Properties and Plant Nutrition in Egyptian Alluvial Soil. Asian Soil Research Journal, 0, , 35-46.	0.0	0