Concetta Bubici

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6259445/publications.pdf

Version: 2024-02-01

29 papers 3,929 citations

411340 20 h-index 28 g-index

29 all docs

29 docs citations

times ranked

29

6610 citing authors

#	Article	IF	CITATIONS
1	Phosphorylation and Stabilization of PIN1 by JNK Promote Intrahepatic Cholangiocarcinoma Growth. Hepatology, 2021, 74, 2561-2579.	3.6	13
2	STARD1: a new rising StAR in cholesterol-mediated hepatocarcinogenesis. Hepatobiliary Surgery and Nutrition, 2021, 10, 910-912.	0.7	O
3	ASKing No More: The Emerging Role of Dualâ€Specific Phosphatase 12 in the Regulation of Hepatic Lipid Metabolism. Hepatology, 2019, 70, 1091-1094.	3.6	2
4	Editorial: The Warburg Effect Regulation Under Siege: the Intertwined Pathways in Health and Disease. Frontiers in Cell and Developmental Biology, 2019, 7, 80.	1.8	13
5	The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene, 2019, 38, 2223-2240.	2.6	244
6	High Expression of Glycolytic Genes in Cirrhosis Correlates With the Risk of Developing Liver Cancer. Frontiers in Cell and Developmental Biology, 2018, 6, 138.	1.8	56
7	Feeding the Hedgehog: A new meaning for JNK signalling in liver regeneration. Journal of Hepatology, 2018, 69, 572-574.	1.8	3
8	Linking apoptosis to cancer metabolism: Another missing piece of JuNK. Molecular and Cellular Oncology, 2016, 3, e1103398.	0.3	9
9	PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation. Nature Communications, 2015, 6, 7882.	5.8	177
10	<scp>JNK</scp> signalling in cancer: in need of new, smarter therapeutic targets. British Journal of Pharmacology, 2014, 171, 24-37.	2.7	292
11	Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma. Oncogene, 2013, 32, 4231-4242.	2.6	104
12	Mechanisms of liver disease: cross-talk between the NF-κB and JNK pathways. Biological Chemistry, 2009, 390, 965-976.	1.2	128
13	The NF-κB Transcription Factor Pathway as a Therapeutic Target in Cancer: Methods for Detection of NF-κB Activity. Methods in Molecular Biology, 2009, 512, 169-207.	0.4	42
14	Gadd $45\hat{l}^2$ promotes hepatocyte survival during liver regeneration in mice by modulating JNK signaling. Journal of Clinical Investigation, 2008, 118, 1911-1923.	3.9	85
15	Upregulation of Twist-1 by NF-κB Blocks Cytotoxicity Induced by Chemotherapeutic Drugs. Molecular and Cellular Biology, 2007, 27, 3920-3935.	1.1	133
16	Insights into the Structural Basis of the GADD45β-mediated Inactivation of the JNK Kinase, MKK7/JNKK2. Journal of Biological Chemistry, 2007, 282, 19029-19041.	1.6	66
17	A Method for Isolating Prosurvival Targets of NF-κB/Rel Transcription Factors. Methods in Molecular Biology, 2007, 399, 99-124.	0.4	5
18	The NF-κB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death and Differentiation, 2006, 13, 712-729.	5.0	234

#	Article	IF	CITATIONS
19	Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene, 2006, 25, 6731-6748.	2.6	371
20	TNF-Â inhibits asbestos-induced cytotoxicity via a NF-ÂB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10397-10402.	3.3	280
21	NF-κB meets ROS: an â€~iron-ic' encounter. Cell Death and Differentiation, 2005, 12, 1259-1262.	5.0	22
22	In the Crosshairs: NF-κB Targets the JNK Signaling Cascade. Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents, 2005, 4, 569-576.	0.4	1
23	Oxygen JNKies: Phosphatases Overdose on ROS. Developmental Cell, 2005, 8, 452-454.	3.1	15
24	NF-κB and JNK: An Intricate Affair. Cell Cycle, 2004, 3, 1524-1529.	1.3	101
25	Linking JNK signaling to NF-κB: a key to survival. Journal of Cell Science, 2004, 117, 5197-5208.	1.2	254
26	Gadd45β mediates the NF-κB suppression of JNK signalling by targeting MKK7/JNKK2. Nature Cell Biology, 2004, 6, 146-153.	4.6	318
27	CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO Journal, 2004, 23, 3175-3185.	3.5	291
28	Ferritin Heavy Chain Upregulation by NF-κB Inhibits TNFα-Induced Apoptosis by Suppressing Reactive Oxygen Species. Cell, 2004, 119, 529-542.	13.5	589
29	Gadd $45\hat{l}^2$ mediates the protective effects of CD40 costimulation against Fas-induced apoptosis. Blood, 2003, 102, 3270-3279.	0.6	81