Christopher L Jerde

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6259389/publications.pdf
Version: 2024-02-01

Environmental DNA Methods for Ecological Monitoring and Biodiversity Assessment in Estuaries.
Estuaries and Coasts, 2022, 45, 2254-2273.

Environmental conditions influence eDNA particle size distribution in aquatic systems. Environmental DNA, 2021, 3, 643-653.

Can we manage fisheries with the inherent uncertainty from eDNA?. Journal of Fish Biology, 2021, 98, 341-353.

4 What do you mean by false positive?. Environmental DNA, 2021, 3, 879-883.
3.1

Are Genetic Reference Libraries Sufficient for Environmental DNA Metabarcoding of Mekong River
1.2

Basin Fish?. Water (Switzerland), 2021, 13, 1767.

Fishing Methods Matter: Comparing the Community and Trait Composition of the Dai (Bagnet) and Gillnet Fisheries in the Tonle Sap River in Southeast Asia. Water (Switzerland), 2021, 13, 1904.
1.2

At <scp>Palmyra Atoll</scp>, the fishâ€community environmental <scp>DNA</scp> signal changes
At <scp>Palmyra Atoli</scp>, the fishâcommunity environmental <scp>DNA
across habitats but not with tides. Journal of Fish Biology, 2021, 98, 415-425.
$0.7 \quad 37$

A Review of Environmental Pollution from the Use and Disposal of Cigarettes and Electronic
Cigarettes: Contaminants, Sources, and Impacts. Sustainability, 2021, 13, 12994.

Assessing the Global and Local Uncertainty of Scientific Evidence in the Presence of Model
$9 \quad$ Misspecification. Frontiers in Ecology and Evolution, 2021, 9,.

Population dynamics of threatened Lahontan cutthroat trout in Summit Lake, Nevada. Scientific
Reports, 2020, 10, 9184.
11 Calibrating Environmental DNA Metabarcoding to Conventional Surveys for Measuring Fish Species
Richness. Frontiers in Ecology and Evolution, 2020, 8, .

Are Environmental DNA Methods Ready for Aquatic Invasive Species Management?. Trends in Ecology and Evolution, 2020, 35, 668-678.

Looking where it's hard to see: a case study documenting rare <scp> <i>Eucyclogobius
newberryi</i></scp> presence in a California lagoon. Journal of Fish Biology, 2020, 97, 572-576.
Population connectivity of adfluvial and stream-resident Lahontan cutthroat trout: implications for
14 resilience, management, and restoration. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 426-437.

15 Strong Evidence for an Intraspecific Metabolic Scaling Coefficient Near 0.89 in Fish. Frontiers in
Physiology, 2019, 10, 1166.

Measuring global fish species richness with <scp>eDNA</scp> metabarcoding. Molecular Ecology
Resources, 2019, 19, 19-22.

High-Throughput Sequencing for Understanding the Ecology of Emerging Infectious Diseases at the
Wildlife-Human Interface. Frontiers in Ecology and Evolution, 2019, 7, .
1.1

20
19 Detecting Southern Californiaâ $€^{T M} s$ White Sharks With Environmental DNA. Frontiers in Marine Science,
2018, 5,
Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic
filtering. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 1362-1374.
22 Controls on eDNA movement in streams: Transport, Retention, and Resuspension. Scientific Reports,
$2017,7,5065$.
Estimating species richness using environmental <scp>DNA</scp>. Ecology and Evolution, 2016, 6,
$4214-4226$.

A sensitive environmental DNA (eDNA) assay leads to new insights on Ruffe (Gymnocephalus cernua)
25

Confronting species distribution model predictions with species functional traits. Ecology and
Evolution, 2016, 6, 873-879.

26 Using Environmental DNA for Invasive Species Surveillance and Monitoring. Methods in Molecular

 Biology, 2016, 1452, 131-142.$0.4 \quad 16$

$$
27 \quad \begin{aligned}
& \text { Influence of Stream Bottom Substrate on Retention and Transport of Vertebrate Environmental DNA. } \\
& \text { Environmental Science \& Technology, 2016, 50, 8770-8779. }
\end{aligned}
$$

Risk Analysis and Bioeconomics of Invasive Species to Inform Policy and Management. Annual Review of Environment and Resources, 2016, 41, 453-488.
5.6

149

The room temperature preservation of filtered environmental <scp>DNA</scp> samples and

Assessing the influence of different inland lake management strategies on human-mediated invasive
species spread. Management of Biological Invasions, 2015, 6, 57-69.

Implementing invasive species control: a case study of multi-jurisdictional coordination at Lake Tahoe, USA. Management of Biological Invasions, 2015, 6, 319-328.

Successful survival, growth, and reproductive potential of quagga mussels in low calcium lake water: is there uncertainty of establishment risk?. PeerJ, 2015, 3, e1276.

Estimating relative risk of within-lake aquatic plant invasion using combined measures of recreational boater movement and habitat suitability. PeerJ, 2015, 3, e845.

Grass carp in the Great Lakes region: establishment potential, expert perceptions, and re-evaluation of
41 experimental evidence of ecological impact. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71, 992-999.

Particle size distribution and optimal capture of aqueous macrobial <scp>eDNA</scp>. Methods in
Ecology and Evolution, 2014, 5, 676-684.

Geographic selection bias of occurrence data influences transferability of invasive
<i><scp>H</scp>ydrilla verticillata</i> distribution models. Ecology and Evolution, 2014, 4, 2584-2593.
0.8

31

Quantifying Environmental DNA Signals for Aquatic Invasive Species Across Multiple Detection
Platforms. Environmental Science \& Technology, 2014, 48, 12800-12806.

Meta-genomic surveillance of invasive species in the bait trade. Conservation Genetics Resources, 2014,
6, 563-567.

Environmental Conditions Influence eDNA Persistence in Aquatic Systems. Environmental Science \& Technology, 2014, 48, 1819-1827.

Internet and Free Press Are Associated with Reduced Lags in Clobal Outbreak Reporting. PLOS
Currents, 2014, 6,

An assessment of angler education and bait trade regulations to prevent invasive species
48 introductions in the Laurentian Great Lakes. Management of Biological Invasions, 2014, 5, 319-326.
0.5

23

Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Canadian
Journal of Fisheries and Aquatic Sciences, 2013, 70, 522-526.

Viability of Aquatic Plant Fragments following Desiccation. Invasive Plant Science and Management,
2013, 6, 320-325.

The roles of complement receptor 3 and $\mathrm{Fc} \hat{\mathrm{C}}^{3}$ receptors during <i>Leishmania</i> phagosome maturation.
Journal of Leukocyte Biology, 2013, 93, 921-932.

Validation of eDNA Surveillance Sensitivity for Detection of Asian Carps in Controlled and Field Experiments. PLoS ONE, 2013, 8, e58316.
1.1

149

Response to Casey <i>et al. <lì's sensitivity of detecting environmental DNA comment. Conservation
Letters, 2012, 5, 241-242.
2.8

3

\#	Article	IF	Citations
55	Weed Risk Assessment for Aquatic Plants: Modification of a New Zealand System for the United States. PLoS ONE, 2012, 7, e40031.	1.1	42
56	Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Molecular Ecology, 2012, 21, 2555-2558.	2.0	248
57	Eurasian watermilfoil fitness loss and invasion potential following desiccation during simulated overland transport. Aquatic Invasions, 2012, 7, 135-142.	0.6	14
58	â $œ$ Sight-unseenâ $€ \cdot d e t e c t i o n ~ o f ~ r a r e ~ a q u a t i c ~ s p e c i e s ~ u s i n g ~ e n v i r o n m e n t a l ~ D N A . ~ C o n s e r v a t i o n ~ L e t t e r s, ~ 2011, ~$ 4, 150-157.	2.8	929
59	Identifying Movement States From Location Data Using Cluster Analysis. Journal of Wildlife Management, 2010, 74, 588-594.	0.7	59
60	Chance Establishment for Sexual, Semelparous Species: Overcoming the Allee Effect. American Naturalist, 2009, 173, 734-746.	1.0	33
61	Inferring linear feature use in the presence of GPS measurement error. Environmental and Ecological Statistics, 2009, 16, 531-546.	1.9	24
62	PREDICTING INVASION RISK USING MEASURES OF INTRODUCTION EFFORT AND ENVIRONMENTAL NICHE MODELS. , 2007, 17, 663-674.		122
63	Waiting for Invasions: A Framework for the Arrival of Nonindigenous Species. American Naturalist, 2007, 170, 1-9.	1.0	98
64	Application of random effects to the study of resource selection by animals. Journal of Animal Ecology, 2006, 75, 887-898.	1.3	615
65	GPS MEASUREMENT ERROR INFLUENCES ON MOVEMENT MODEL PARAMETERIZATION. , 2005, 15, 806-810.		83
66	Estimating fish alpha- and beta-diversity along a small stream with environmental DNA metabarcoding. Metabarcoding and Metagenomics, 0, 2, e24262.	0.0	48

