Christopher L Jerde

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6259389/publications.pdf
Version: 2024-02-01

â€œSight-unseenâ€•detection of rare aquatic species using environmental DNA. Conservation Letters, 2011 ,
4, 150-157.

The room temperature preservation of filtered environmental <scp>DNA</scp> samples andEcology Resources, 2015, 15, 168-176.

7 Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Canadian
7 Journal of Fisheries and Aquatic Sciences, 2013, 70, 522-526.
1.4

8 Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Molecular Ecology, 2012, 21, 2555-2558.
3.9

248

9 Controls on eDNA movement in streams: Transport, Retention, and Resuspension. Scientific Reports,
2017, 7, 5065.
3.3

218

10 Global Introductions of Crayfishes: Evaluating the Impact of Species Invasions on Ecosystem Services. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 449-472.
8.3

```
11 Estimating species richness using environmental <scp>DNA</scp>. Ecology and Evolution, 2016, 6,
4214-4226.
```

$1.9 \quad 169$

Quantifying Environmental DNA Signals for Aquatic Invasive Species Across Multiple Detection
Platforms. Environmental Science \& Technology, 2014, 48, 12800-12806.
$10.0 \quad 168$
Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic
filtering. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 1362-1374.
$1.4 \quad 161$

14 Validation of eDNA Surveillance Sensitivity for Detection of Asian Carps in Controlled and Field
2.5

149 Experiments. PLoS ONE, 2013, 8, e58316.
.
16

\#	Article	IF	Citations
19	Can we manage fisheries with the inherent uncertainty from eDNA?. Journal of Fish Biology, 2021, 98, 341-353.	1.6	99
20	Waiting for Invasions: A Framework for the Arrival of Nonindigenous Species. American Naturalist, 2007, 170, 1-9.	2.1	98
21	Active and passive environmental DNA surveillance of aquatic invasive species. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 76-83.	1.4	98
22	GPS MEASUREMENT ERROR INFLUENCES ON MOVEMENT MODEL PARAMETERIZATION. , 2005, 15, 806-810.		83
23	Calibrating Environmental DNA Metabarcoding to Conventional Surveys for Measuring Fish Species Richness. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	74
24	Identifying Movement States From Location Data Using Cluster Analysis. Journal of Wildlife Management, 2010, 74, 588-594.	1.8	59
25	Modelling the transport of environmental DNA through a porous substrate using continuous flow-through column experiments. Journal of the Royal Society Interface, 2016, 13, 20160290.	3.4	57
26	Grass carp in the Great Lakes region: establishment potential, expert perceptions, and re-evaluation of experimental evidence of ecological impact. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71, 992-999.	1.4	54
27	Strong Evidence for an Intraspecific Metabolic Scaling Coefficient Near 0.89 in Fish. Frontiers in Physiology, 2019, 10, 1166.	2.8	54
28	Detecting Southern Californiaâ $€^{T M} s$ White Sharks With Environmental DNA. Frontiers in Marine Science, 2018, 5, .	2.5	52
29	The use of environmental DNA in invasive species surveillance of the Great Lakes commercial bait trade. Conservation Biology, 2015, 29, 430-439.	4.7	51
30	Measuring global fish species richness with <scp>eDNA</scp> metabarcoding. Molecular Ecology Resources, 2019, 19, 19-22.	4.8	48
31	Estimating fish alpha- and beta-diversity along a small stream with environmental DNA metabarcoding. Metabarcoding and Metagenomics, 0, 2, e24262.	0.0	48
32	Weed Risk Assessment for Aquatic Plants: Modification of a New Zealand System for the United States. PLoS ONE, 2012, 7, e40031.	2.5	42
33	Confronting species distribution model predictions with species functional traits. Ecology and Evolution, 2016, 6, 873-879.	1.9	41
34	Environmental conditions influence eDNA particle size distribution in aquatic systems. Environmental DNA, 2021, 3, 643-653.	5.8	38
35	Meta-genomic surveillance of invasive species in the bait trade. Conservation Genetics Resources, 2014, 6, 563-567.	0.8	37
36	At <scp>Palmyra Atoll</scp>, the fishâ€eommunity environmental <scp>DNA</scp> signal changes across habitats but not with tides. Journal of Fish Biology, 2021, 98, 415-425.	1.6	37

$37 \quad$ What do you mean by false positive?. Environmental DNA, 2021, 3, 879-883.
Chance Establishment for Sexual, Semelparous Species: Overcoming the Allee Effect. American
Naturalist, 2009, 173, 734-746.

41	Geographic selection bias of occurrence data influences transferability of invasive <i> <scp>H</scp>ydrilla verticillata</i> distribution models. Ecology and Evolution, 2014, 4, 2584-259
42	Long duration, room temperature preservation of filtered eDNA samples. Conservation Genetics Resources, 2015, 7, 789-791.
43	Improving confidence in environmental <scp>DNA</scp> species detection. Molecular Ecology Resources, 2015, 15, 461-463.
44	Inferring linear feature use in the presence of GPS measurement error. Environmental and Ecological Statistics, 2009, 16, 531-546.

45 The roles of complement receptor 3 and Fcî3 receptors during <i> Leishmania</i> phagosome maturation.
Journal of Leukocyte Biology, 2013, 93, 921-932.

46 An assessment of angler education and bait trade regulations to prevent invasive species
introductions in the Laurentian Great Lakes. Management of Biological Invasions, 2014, 5, 319-326.
1.2

23
$47 \quad$ High-Throughput Sequencing for Understanding the Ecology of Emerging Infectious Diseases at the Wildlife-Human Interface. Frontiers in Ecology and Evolution, 2019, 7, .
$2.2 \quad 20$

A Review of Environmental Pollution from the Use and Disposal of Cigarettes and Electronic
Cigarettes: Contaminants, Sources, and Impacts. Sustainability, 2021, 13, 12994.
3.2

18

Environmental DNA Methods for Ecological Monitoring and Biodiversity Assessment in Estuaries.
Estuaries and Coasts, 2022, 45, 2254-2273.

Eurasian watermilfoil fitness loss and invasion potential following desiccation during simulated
1.6

Are Genetic Reference Libraries Sufficient for Environmental DNA Metabarcoding of Mekong River Basin Fish?. Water (Switzerland), 2021, 13, 1767.

Population connectivity of adfluvial and stream-resident Lahontan cutthroat trout: implications for
57 resilience, management, and restoration. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76,
1.4

8 426-437.

58 Assessing the Global and Local Uncertainty of Scientific Evidence in the Presence of Model

Population dynamics of threatened Lahontan cutthroat trout in Summit Lake, Nevada. Scientific
Reports, 2020, 10, 9184.
3.3

6

Looking where it's hard to see: a case study documenting rare <scp><i>Eucyclogobius
newberryi</i></scp> presence in a California lagoon. Journal of Fish Biology, 2020, 97, 572-576.
1.6

6
Implementing invasive species control: a case study of multi-jurisdictional coordination at Lake Tahoe,
61 USA. Management of Biological Invasions, 2015, 6, 319-328.

Internet and Free Press Are Associated with Reduced Lags in Clobal Outbreak Reporting. PLOS
Currents, 2014, 6,.

63 Estimating relative risk of within-lake aquatic plant invasion using combined measures of recreational
boater movement and habitat suitability. Peer), 2015,3, e845.
64 Response to Casey <i>et al.</i>'s sensitivity of detecting environmental DNA comment. Conservation
Letters, 2012, 5, 241-242.

5
65 Invasion Biology. , 2019, , 384-391.

