
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6259389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	"Sight-unseen―detection of rare aquatic species using environmental DNA. Conservation Letters, 2011, 4, 150-157.	5.7	929
2	Environmental Conditions Influence eDNA Persistence in Aquatic Systems. Environmental Science & Technology, 2014, 48, 1819-1827.	10.0	661
3	Application of random effects to the study of resource selection by animals. Journal of Animal Ecology, 2006, 75, 887-898.	2.8	615
4	Particle size distribution and optimal capture of aqueous macrobial <scp>eDNA</scp> . Methods in Ecology and Evolution, 2014, 5, 676-684.	5.2	361
5	Quantification of mesocosm fish and amphibian species diversity via environmental <scp>DNA</scp> metabarcoding. Molecular Ecology Resources, 2016, 16, 29-41.	4.8	311
6	The room temperature preservation of filtered environmental <scp>DNA</scp> samples and assimilation into a phenol–chloroform–isoamyl alcohol <scp>DNA</scp> extraction. Molecular Ecology Resources, 2015, 15, 168-176.	4.8	277
7	Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 522-526.	1.4	255
8	Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Molecular Ecology, 2012, 21, 2555-2558.	3.9	248
9	Controls on eDNA movement in streams: Transport, Retention, and Resuspension. Scientific Reports, 2017, 7, 5065.	3.3	218
10	Global Introductions of Crayfishes: Evaluating the Impact of Species Invasions on Ecosystem Services. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 449-472.	8.3	202
11	Estimating species richness using environmental <scp>DNA</scp> . Ecology and Evolution, 2016, 6, 4214-4226.	1.9	169
12	Quantifying Environmental DNA Signals for Aquatic Invasive Species Across Multiple Detection Platforms. Environmental Science & amp; Technology, 2014, 48, 12800-12806.	10.0	168
13	Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 1362-1374.	1.4	161
14	Validation of eDNA Surveillance Sensitivity for Detection of Asian Carps in Controlled and Field Experiments. PLoS ONE, 2013, 8, e58316.	2.5	149
15	Risk Analysis and Bioeconomics of Invasive Species to Inform Policy and Management. Annual Review of Environment and Resources, 2016, 41, 453-488.	13.4	149
16	Influence of Stream Bottom Substrate on Retention and Transport of Vertebrate Environmental DNA. Environmental Science & Technology, 2016, 50, 8770-8779.	10.0	131
17	PREDICTING INVASION RISK USING MEASURES OF INTRODUCTION EFFORT AND ENVIRONMENTAL NICHE MODELS. , 2007, 17, 663-674.		122
18	Are Environmental DNA Methods Ready for Aquatic Invasive Species Management?. Trends in Ecology and Evolution, 2020, 35, 668-678.	8.7	118

#	Article	IF	CITATIONS
19	Can we manage fisheries with the inherent uncertainty from eDNA?. Journal of Fish Biology, 2021, 98, 341-353.	1.6	99
20	Waiting for Invasions: A Framework for the Arrival of Nonindigenous Species. American Naturalist, 2007, 170, 1-9.	2.1	98
21	Active and passive environmental DNA surveillance of aquatic invasive species. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 76-83.	1.4	98
22	GPS MEASUREMENT ERROR INFLUENCES ON MOVEMENT MODEL PARAMETERIZATION. , 2005, 15, 806-810.		83
23	Calibrating Environmental DNA Metabarcoding to Conventional Surveys for Measuring Fish Species Richness. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	74
24	ldentifying Movement States From Location Data Using Cluster Analysis. Journal of Wildlife Management, 2010, 74, 588-594.	1.8	59
25	Modelling the transport of environmental DNA through a porous substrate using continuous flow-through column experiments. Journal of the Royal Society Interface, 2016, 13, 20160290.	3.4	57
26	Grass carp in the Great Lakes region: establishment potential, expert perceptions, and re-evaluation of experimental evidence of ecological impact. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71, 992-999.	1.4	54
27	Strong Evidence for an Intraspecific Metabolic Scaling Coefficient Near 0.89 in Fish. Frontiers in Physiology, 2019, 10, 1166.	2.8	54
28	Detecting Southern California's White Sharks With Environmental DNA. Frontiers in Marine Science, 2018, 5, .	2.5	52
29	The use of environmental DNA in invasive species surveillance of the Great Lakes commercial bait trade. Conservation Biology, 2015, 29, 430-439.	4.7	51
30	Measuring global fish species richness with <scp>eDNA</scp> metabarcoding. Molecular Ecology Resources, 2019, 19, 19-22.	4.8	48
31	Estimating fish alpha- and beta-diversity along a small stream with environmental DNA metabarcoding. Metabarcoding and Metagenomics, 0, 2, e24262.	0.0	48
32	Weed Risk Assessment for Aquatic Plants: Modification of a New Zealand System for the United States. PLoS ONE, 2012, 7, e40031.	2.5	42
33	Confronting species distribution model predictions with species functional traits. Ecology and Evolution, 2016, 6, 873-879.	1.9	41
34	Environmental conditions influence eDNA particle size distribution in aquatic systems. Environmental DNA, 2021, 3, 643-653.	5.8	38
35	Meta-genomic surveillance of invasive species in the bait trade. Conservation Genetics Resources, 2014, 6, 563-567.	0.8	37
36	At <scp>Palmyra Atoll</scp> , the fish community environmental <scp>DNA</scp> signal changes across habitats but not with tides. Journal of Fish Biology, 2021, 98, 415-425.	1.6	37

#	Article	IF	CITATIONS
37	What do you mean by false positive?. Environmental DNA, 2021, 3, 879-883.	5.8	36
38	A sensitive environmental DNA (eDNA) assay leads to new insights on Ruffe (Gymnocephalus cernua) spread in North America. Biological Invasions, 2016, 18, 3205-3222.	2.4	34
39	Chance Establishment for Sexual, Semelparous Species: Overcoming the Allee Effect. American Naturalist, 2009, 173, 734-746.	2.1	33
40	Viability of Aquatic Plant Fragments following Desiccation. Invasive Plant Science and Management, 2013, 6, 320-325.	1.1	32
41	Geographic selection bias of occurrence data influences transferability of invasive <i><scp>H</scp>ydrilla verticillata</i> distribution models. Ecology and Evolution, 2014, 4, 2584-2593.	1.9	31
42	Long duration, room temperature preservation of filtered eDNA samples. Conservation Genetics Resources, 2015, 7, 789-791.	0.8	31
43	Improving confidence in environmental <scp>DNA</scp> species detection. Molecular Ecology Resources, 2015, 15, 461-463.	4.8	26
44	Inferring linear feature use in the presence of GPS measurement error. Environmental and Ecological Statistics, 2009, 16, 531-546.	3.5	24
45	The roles of complement receptor 3 and Fcγ receptors during <i>Leishmania</i> phagosome maturation. Journal of Leukocyte Biology, 2013, 93, 921-932.	3.3	24
46	An assessment of angler education and bait trade regulations to prevent invasive species introductions in the Laurentian Great Lakes. Management of Biological Invasions, 2014, 5, 319-326.	1.2	23
47	High-Throughput Sequencing for Understanding the Ecology of Emerging Infectious Diseases at the Wildlife-Human Interface. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	20
48	A Review of Environmental Pollution from the Use and Disposal of Cigarettes and Electronic Cigarettes: Contaminants, Sources, and Impacts. Sustainability, 2021, 13, 12994.	3.2	18
49	Using Environmental DNA for Invasive Species Surveillance and Monitoring. Methods in Molecular Biology, 2016, 1452, 131-142.	0.9	16
50	Environmental DNA Methods for Ecological Monitoring and Biodiversity Assessment in Estuaries. Estuaries and Coasts, 2022, 45, 2254-2273.	2.2	16
51	Eurasian watermilfoil fitness loss and invasion potential following desiccation during simulated overland transport. Aquatic Invasions, 2012, 7, 135-142.	1.6	14
52	Investigating diversity of pathogenic microbes in commercial bait trade water. PeerJ, 2018, 6, e5468.	2.0	14
53	Successful survival, growth, and reproductive potential of quagga mussels in low calcium lake water: is there uncertainty of establishment risk?. PeerJ, 2015, 3, e1276.	2.0	12
54	Managing the introduction and spread of non-native aquatic plants in the Laurentian Great Lakes: a regional risk assessment approach. Management of Biological Invasions, 2015, 6, 45-55.	1.2	10

#	Article	IF	CITATIONS
55	Assessing the influence of different inland lake management strategies on human-mediated invasive species spread. Management of Biological Invasions, 2015, 6, 57-69.	1.2	10
56	Are Genetic Reference Libraries Sufficient for Environmental DNA Metabarcoding of Mekong River Basin Fish?. Water (Switzerland), 2021, 13, 1767.	2.7	9
57	Population connectivity of adfluvial and stream-resident Lahontan cutthroat trout: implications for resilience, management, and restoration. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 426-437.	1.4	8
58	Assessing the Global and Local Uncertainty of Scientific Evidence in the Presence of Model Misspecification. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	7
59	Population dynamics of threatened Lahontan cutthroat trout in Summit Lake, Nevada. Scientific Reports, 2020, 10, 9184.	3.3	6
60	Looking where it's hard to see: a case study documenting rare <scp><i>Eucyclogobius newberryi</i></scp> presence in a California lagoon. Journal of Fish Biology, 2020, 97, 572-576.	1.6	6
61	Implementing invasive species control: a case study of multi-jurisdictional coordination at Lake Tahoe, USA. Management of Biological Invasions, 2015, 6, 319-328.	1.2	6
62	Internet and Free Press Are Associated with Reduced Lags in Global Outbreak Reporting. PLOS Currents, 2014, 6, .	1.4	5
63	Estimating relative risk of within-lake aquatic plant invasion using combined measures of recreational boater movement and habitat suitability. PeerJ, 2015, 3, e845.	2.0	5
64	Response to Casey <i>et al.</i> 's sensitivity of detecting environmental DNA comment. Conservation Letters, 2012, 5, 241-242.	5.7	3
65	Invasion Biology. , 2019, , 384-391.		1
66	Fishing Methods Matter: Comparing the Community and Trait Composition of the Dai (Bagnet) and Gillnet Fisheries in the Tonle Sap River in Southeast Asia. Water (Switzerland), 2021, 13, 1904.	2.7	1