Fei Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6259199/publications.pdf

Version: 2024-02-01

38 papers	3,224 citations	279798 23 h-index	36 g-index
20	20	20	6021
38 all docs	38 docs citations	38 times ranked	6031 citing authors

#	Article	IF	CITATIONS
1	Preparation of transparent LLZTO electrolyte and its application in the observation of Li dendrite. Ceramics International, 2022, 48, 18949-18955.	4.8	3
2	Bacteria cellulose framework-supported solid composite polymer electrolytes for ambient-temperature lithium metal batteries. Nanotechnology, 2022, 33, 415401.	2.6	3
3	Experimental and first-principles study on amorphous aluminum nitride induced island-like nucleation and planar growth of lithium metal anode. Electrochimica Acta, 2022, 421, 140520.	5.2	1
4	Synergistically reinforced poly(ethylene oxide)-based composite electrolyte for high-temperature lithium metal batteries. Journal of Colloid and Interface Science, 2022, 622, 1029-1036.	9.4	7
5	Failure Analysis of Garnet-Type Solid State Electrolyte LLZO by Electrochemical Method. Lecture Notes in Electrical Engineering, 2021, , 551-559.	0.4	O
6	A high performance lithium metal anode enabled by CF ₄ plasma treated carbon paper. Nanoscale, 2021, 13, 11800-11807.	5.6	5
7	Effect of Sintering Temperature and Holding Time on Ionic Conductivity for Li6.4La3Zr1.4Ta0.6O12 Electrolyte. Lecture Notes in Electrical Engineering, 2021, , 435-441.	0.4	O
8	Ultra-fast and facile preparation of uniform sulfur/graphene composites with microwave for lithiumâ [^] sulfur batteries. Nanotechnology, 2021, 32, 285401.	2.6	6
9	Dendrite-Suppressing Separator with High Thermal Stability Modified by Beaded-Chain-Like Polyimide Coating for a Li Metal Anode. Energy & Samp; Fuels, 2021, 35, 8417-8422.	5.1	6
10	Facile Microwave-Impulse Synthesis of Multifunctional rGO/MoS ₂ /MoO ₂ Composites as a Permselective Separator-Coating Layer for Li–S Batteries. ACS Applied Energy Materials, 2021, 4, 10252-10262.	5.1	16
11	Robust and high thermal-stable composite polymer electrolyte reinforced by PI nanofiber network. Nanotechnology, 2021, 32, 495401.	2.6	9
12	In-situ optical observation of Li growth in garnet-type solid state electrolyte. Energy Storage Materials, 2021, 41, 791-797.	18.0	31
13	Well-contacted Li/LLZTO interface by citric acid aqueous treatment for solid-state Li metal batteries. Materials Letters, 2020, 280, 128543.	2.6	12
14	A Simple and Highly Efficient Method toward High-Density Garnet-Type LLZTO Solid-State Electrolyte. ACS Applied Materials & Description (2008) 12, 30313-30319.	8.0	71
15	Ultrathin dense double-walled carbon nanotube membrane for enhanced lithium-sulfur batteries. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	5
16	PAN/PI functional double-layer coating for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 6183-6189.	10.3	31
17	Direct growth of 3D host on Cu foil for stable lithium metal anode. Energy Storage Materials, 2018, 13, 323-328.	18.0	92
18	Scalable synthesis of sub-100 nm hollow carbon nanospheres for energy storage applications. Nano Research, 2018, 11, 1822-1833.	10.4	29

#	Article	IF	CITATIONS
19	Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode. Rare Metals, 2018, 37, 510-519.	7.1	32
20	Insight of holey-graphene in the enhancing of electrocatalytic activity as supporting material. Nanotechnology, 2018, 29, 425708.	2.6	6
21	TiC MXene High Energy Density Cathode for Lithium–Air Battery. Advanced Theory and Simulations, 2018, 1, 1800059.	2.8	21
22	Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries. Nano Energy, 2017, 33, 37-44.	16.0	159
23	Atomic-Layer-Deposition Functionalized Carbonized Mesoporous Wood Fiber for High Sulfur Loading Lithium Sulfur Batteries. ACS Applied Materials & Enterfaces, 2017, 9, 14801-14807.	8.0	77
24	Ultraâ€Thick, Lowâ€Tortuosity, and Mesoporous Wood Carbon Anode for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1600377.	19.5	257
25	<i>In Situ</i> Transmission Electron Microscopy Observation of Sodiation–Desodiation in a Long Cycle, High-Capacity Reduced Graphene Oxide Sodium-Ion Battery Anode. Chemistry of Materials, 2016, 28, 6528-6535.	6.7	79
26	Improved cycling performance of LiNi0.8Co0.15Al0.05O2/Al2O3 with core-shell structure synthesized by a heterogeneous nucleation-and-growth process. Ionics, 2016, 22, 2021-2026.	2.4	27
27	Na-lon Battery Anodes: Materials and Electrochemistry. Accounts of Chemical Research, 2016, 49, 231-240.	15.6	886
28	Extreme Light Management in Mesoporous Wood Cellulose Paper for Optoelectronics. ACS Nano, 2016, 10, 1369-1377.	14.6	161
29	Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery. ACS Applied Materials & amp; Interfaces, 2016, 8, 2204-2210.	8.0	146
30	Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy, 2015, 13, 346-354.	16.0	270
31	Transient Rechargeable Batteries Triggered by Cascade Reactions. Nano Letters, 2015, 15, 4664-4671.	9.1	77
32	Sodium-Ion Intercalated Transparent Conductors with Printed Reduced Graphene Oxide Networks. Nano Letters, 2015, 15, 3763-3769.	9.1	46
33	Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries. ACS Applied Materials & Diterfaces, 2015, 7, 23291-23296.	8.0	123
34	In Situ Investigations of Liâ€MoS ₂ with Planar Batteries. Advanced Energy Materials, 2015, 5, 1401742.	19.5	87
35	Fabrication and characteristics of nano LiFePO4/C composites with high capacity and high rate using nano Fe2O3 as raw materials. Nano Energy, 2014, 6, 173-179.	16.0	42
36	Highly Conductive Microfiber of Graphene Oxide Templated Carbonization of Nanofibrillated Cellulose. Advanced Functional Materials, 2014, 24, 7366-7372.	14.9	94

FEI SHEN

#	Article	IF	CITATIONS
37	Depolarized and Fully Active Cathode Based on Li(Ni _{0.5} Co _{0.2} Mn _{0.32} Embedded in Carbon Nanotube Network for Advanced Batteries. Nano Letters, 2014, 14, 4700-4706.	9.1	95
38	Scalable Holey Graphene Synthesis and Dense Electrode Fabrication toward High-Performance Ultracapacitors. ACS Nano, 2014, 8, 8255-8265.	14.6	212