
Shaopeng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6259143/publications.pdf Version: 2024-02-01

SHAODENC YANC

#	Article	IF	CITATIONS
1	F-Type Pseudo-Halide Anions for High-Efficiency and Stable Wide-Band-Gap Inverted Perovskite Solar Cells with Fill Factor Exceeding 84%. ACS Nano, 2022, 16, 10798-10810.	14.6	45
2	Organic Monomolecular Layers Enable Energy-Level Matching for Efficient Hole Transporting Layer Free Inverted Perovskite Solar Cells. ACS Nano, 2019, 13, 1625-1634.	14.6	41
3	Functionalized SnO2 films by using EDTA-2ÂM for high efficiency perovskite solar cells with efficiency over 23%. Chemical Engineering Journal, 2022, 430, 132683.	12.7	38
4	High-Efficiency and Stable Organic Solar Cells Enabled by Dual Cathode Buffer Layers. ACS Applied Materials & Interfaces, 2018, 10, 5682-5692.	8.0	36
5	Progress in perylene diimides for organic solar cell applications. RSC Advances, 2022, 12, 6966-6973.	3.6	33
6	Efficiency enhancement in planar CH 3 NH 3 PbI 3â^'x Cl x perovskite solar cells by processing with bidentate halogenated additives. Solar Energy Materials and Solar Cells, 2017, 165, 36-44.	6.2	32
7	Enhanced efficiency in perovskite solar cells by eliminating the electron contact barrier between the metal electrode and electron transport layer. Journal of Materials Chemistry A, 2019, 7, 1349-1355.	10.3	32
8	18.0% efficiency flexible perovskite solar cells based on double hole transport layers and CH ₃ NH ₃ PbI _{3â^'x} Cl _x with dual additives. Journal of Materials Chemistry C, 2018, 6, 8770-8777.	5.5	28
9	Simultaneous enhancement of short-circuit current density, open circuit voltage and fill factor in ternary organic solar cells based on PTB7-Th:IT-M:PC71BM. Solar Energy Materials and Solar Cells, 2018, 182, 45-51.	6.2	24
10	A facile strategy for enhanced performance of inverted organic solar cells based on low-temperature solution-processed SnO2 electron transport layer. Organic Electronics, 2020, 78, 105555.	2.6	23
11	Enhanced performance of polymer solar cells based on PTB7-Th:PC ₇₁ BM by doping with 1-bromo-4-nitrobenzene. Journal of Materials Chemistry C, 2017, 5, 10985-10990.	5.5	19
12	Wide Band Gap and Highly Conjugated Copolymers Incorporating 2-(Triisopropylsilylethynyl)thiophene-Substituted Benzodithiophene for Efficient Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 28828-28837.	8.0	18
13	Additive Engineering for Efficient and Stable MAPbI ₃ -Perovskite Solar Cells with an Efficiency of over 21%. ACS Applied Materials & Interfaces, 2021, 13, 44451-44459.	8.0	18
14	Facile Physical Modifications of Polymer Hole Transporting Layers for Efficient and Reproducible Perovskite Solar Cells with Fill Factor Exceeding 80%. Solar Rrl, 2020, 4, 2000365.	5.8	13
15	Improved Morphology and Interfacial Contact of PBDB-T:N2200-Based All-Polymer Solar Cells by Using the Solvent Additive <i>p</i> -Anisaldehyde. ACS Applied Energy Materials, 2020, 3, 358-365.	5.1	11
16	A facile strategy to adjust SnO ₂ /perovskite interfacial properties for high-efficiency perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 8414-8421.	5.5	11
17	Multifunctional molecular incorporation boosting the efficiency and stability of the inverted perovskite solar cells. Journal of Power Sources, 2021, 488, 229449.	7.8	10
18	Incorporating Trialkylsilylethynyl-Substituted Head-to-Head Bithiophene Unit into Copolymers for Efficient Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 7271-7280.	8.0	9

SHAOPENG YANG

#	Article	IF	CITATIONS
19	Broadening the light absorption range via PBDB-T to improve the power conversion efficiency in ternary organic solar cells. Organic Electronics, 2020, 78, 105587.	2.6	9
20	High performance ternary organic solar cells using two miscible donor molecules based on PTB7-Th and DR3TBDTT. Organic Electronics, 2017, 41, 209-214.	2.6	7
21	Formation of charge-transfer complexes significantly improves the performance of polymer solar cells based on PBDTTT-C-T: PC71 BM. Progress in Photovoltaics: Research and Applications, 2015, 23, 783-792.	8.1	6
22	Precursor formula engineering enabling high quality solution processed C60 films for efficient and stable inverted perovskite solar cells. Chemical Engineering Journal, 2022, 446, 136897.	12.7	6
23	Formation of charge transfer complexes significantly improves the electron transfer process of polymer solar cells. Organic Electronics, 2015, 18, 70-76.	2.6	5
24	Tailoring the second acceptor unit in easily synthesized ternary copolymers toward efficient non-fullerene polymer solar cells. Dyes and Pigments, 2018, 148, 72-80.	3.7	5
25	Enhancing the Efficiency of Polymer Solar Cells by Modifying Buffer Layer with N,N-Dimethylacetamide. International Journal of Photoenergy, 2014, 2014, 1-6.	2.5	4
26	Enhancing the power conversion efficiency of PCDTBT:PC71BM polymer solar cells using a mixture of solvents. Science Bulletin, 2014, 59, 297-300.	1.7	4
27	Effect of IT-M doping on charge transfer and ultrafast carrier dynamics of ternary organic solar cell materials. Journal Physics D: Applied Physics, 2020, 53, 095103.	2.8	4
28	High-Efficiency and Stable Organic Solar Cells with Stacked LiF and Organic Electrolytes as Cathode Interface Layers. ACS Applied Energy Materials, 2021, 4, 4489-4497.	5.1	4
29	Improving the efficiency of organic photovoltaic cells by introducing an ultrathin modification layer with a strong dipole moment. Science Bulletin, 2012, 57, 1655-1658.	1.7	3
30	Back-Contact Ionic Compound Engineering Boosting the Efficiency and Stability of Blade-Coated Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34040-34048.	8.0	1
31	The trapping effect of sulfur sensitization center Ag2S cluster on T-grain AgBrI microcrystals. Science in China Series G: Physics, Mechanics and Astronomy, 2004, 47, 744-751.	0.2	Ο
32	Study on time-resolved fluorescence dynamics of cyanine dye sensitizing AgBr. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51, 243-250.	0.2	0
33	Super-sensitization mechanism of T-Grain AgBrl emulsion sensitized by an anionicâ^'cationic cyanine dye. Materials Letters, 2008, 62, 2434-2437.	2.6	0
34	Semitransparent Polymer Solar Cells Based on Liquid Crystal Reflectors. International Journal of Photoenergy, 2014, 2014, 1-5.	2.5	0