Sharon A Jansa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6258815/publications.pdf

Version: 2024-02-01

49 papers

2,238 citations

186265
28
h-index

223800 46 g-index

50 all docs

50 docs citations

50 times ranked

2097 citing authors

#	Article	IF	CITATIONS
1	Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Molecular Phylogenetics and Evolution, 2004, 31, 256-276.	2.7	248
2	The Pattern and Timing of Diversification of Philippine Endemic Rodents: Evidence from Mitochondrial and Nuclear Gene Sequences. Systematic Biology, 2006, 55, 73-88.	5.6	192
3	Title is missing!. Journal of Mammalian Evolution, 2000, 7, 43-77.	1.8	118
4	Phylogenetic Relationships in the Genus Mus, Based on Paternally, Maternally, and Biparentally Inherited Characters. Systematic Biology, 2002, 51, 410-431.	5.6	112
5	The challenge of modeling niches and distributions for dataâ€poor species: a comprehensive approach to model complexity. Ecography, 2018, 41, 726-736.	4.5	106
6	Molecular Phylogeny and Biogeography of the Native Rodents of Madagascar (Muridae: Nesomyinae): A Test of the Single-Origin Hypothesis. Cladistics, 1999, 15, 253-270.	3.3	104
7	THE EARLY DIVERSIFICATION HISTORY OF DIDELPHID MARSUPIALS: A WINDOW INTO SOUTH AMERICA'S "SPLENDID ISOLATION― Evolution; International Journal of Organic Evolution, 2014, 68, 684-695.	2.3	102
8	Adaptive Evolution of the Venom-Targeted vWF Protein in Opossums that Eat Pitvipers. PLoS ONE, 2011, 6, e20997.	2.5	70
9	Species Limits and Phylogenetic Relationships in the Didelphid Marsupial Genus Thylamys Based on Mitochondrial DNA Sequences and Morphology. Bulletin of the American Museum of Natural History, 2010, 346, 1-67.	3.4	66
10	Molecular Systematics of Mouse Opossums (Didelphidae: Marmosa): Assessing Species Limits using Mitochondrial DNA Sequences, with Comments on Phylogenetic Relationships and Biogeography. American Museum Novitates, 2010, 2010, 1.	0.6	62
11	A Revision ofPhilander(Marsupialia: Didelphidae), Part 1:P. quica,P. canus, and a New Species from Amazonia. American Museum Novitates, 2018, 3891, 1-70.	0.6	59
12	Tests for Positive Selection on Immune and Reproductive Genes in Closely Related Species of the Murine Genus Mus. Journal of Molecular Evolution, 2003, 56, 294-307.	1.8	57
13	The Phylogenetic Position of the Rodent GenusTyphlomysand the Geographic Origin of Muroidea. Journal of Mammalogy, 2009, 90, 1083-1094.	1.3	55
14	Molecular phylogeny of short-tailed opossums (Didelphidae: Monodelphis): Taxonomic implications and tests of evolutionary hypotheses. Molecular Phylogenetics and Evolution, 2014, 79, 199-214.	2.7	54
15	Snakeâ€venom resistance as a mammalian trophic adaptation: lessons from didelphid marsupials. Biological Reviews, 2012, 87, 822-837.	10.4	53
16	Xenopus gastrulation without a blastocoel roof. Developmental Dynamics, 1992, 195, 162-176.	1.8	52
17	Base-Compositional Heterogeneity in the RAG1 Locus among Didelphid Marsupials: Implications for Phylogenetic Inference and the Evolution of GC Content. Systematic Biology, 2007, 56, 83-96.	5.6	50
18	Why the honey badger don't care: Convergent evolution of venom-targeted nicotinic acetylcholine receptors in mammals that survive venomous snake bites. Toxicon, 2015, 99, 68-72.	1.6	48

#	Article	IF	CITATIONS
19	Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations. Integrative and Comparative Biology, 2016, 56, 1032-1043.	2.0	46
20	Hidden diversity in the Andes: Comparison of species delimitation methods in montane marsupials. Molecular Phylogenetics and Evolution, 2014, 70, 137-151.	2.7	45
21	DNA sequencing reveals unexpected Recent diversity and an ancient dichotomy in the American marsupial genus <i>Marmosops</i> (Didelphidae: Thylamyini). Zoological Journal of the Linnean Society, 2016, 176, 914-940.	2.3	41
22	A Revision of the Didelphid Marsupial Genus MarmosaPart 2. Species of the Rapposa Group (Subgenus) Tj ETQq0 (0.0 rgBT /C)yerlock 10
23	Spatiotemporal diversification of a lowâ€vagility Neotropical vertebrate clade (shortâ€tailed opossums,) Tj ETQq1	1.0.78431 3.0	14 rgBT /0\
24	Craniodental Morphology and Phylogeny of Marsupials. Bulletin of the American Museum of Natural History, 2022, 457, .	3.4	35
25	Phylogenies of Flying Squirrels (Pteromyinae). Journal of Mammalian Evolution, 2002, 9, 99-135.	1.8	33
26	Different patterns of selection on the nuclear genes IRBP and DMP-1 affect the efficiency but not the outcome of phylogeny estimation for didelphid marsupials. Molecular Phylogenetics and Evolution, 2006, 38, 363-380.	2.7	33
27	Descriptions of two New Species ofRhynchomysThomas (Rodentia: Muridae: Murinae) from Luzon Island, Philippines. Journal of Mammalogy, 2007, 88, 287-301.	1.3	33
28	The role of physical geography and habitat type in shaping the biogeographical history of a recent radiation of Neotropical marsupials (<i>Thylamys</i> : Didelphidae). Journal of Biogeography, 2014, 41, 1547-1558.	3.0	32
29	PHYLOGENETIC RELATIONSHIPS OF THE MARSUPIAL GENUS HYLADELPHYS BASED ON NUCLEAR GENE SEQUENCES AND MORPHOLOGY. Journal of Mammalogy, 2005, 86, 853-865.	1.3	31
30	REVIEW OF THE PHILIPPINE GENERA CHROTOMYS AND CELAENOMYS (MURINAE) AND DESCRIPTION OF A NEW SPECIES. Journal of Mammalogy, 2005, 86, 415-428.	1.3	31
31	PHYLOGENY OF THE LONCHOPHYLLINI (CHIROPTERA: PHYLLOSTOMIDAE). Journal of Mammalogy, 2004, 85, 404-413.	1.3	23
32	Extraordinary claims require extraordinary evidence: a comment on Cozzuol et al. (2013): Fig. 1. Journal of Mammalogy, 2014, 95, 893-898.	1.3	23
33	Molecular Phylogeny and Biogeography of the Native Rodents of Madagascar (Muridae: Nesomyinae): A Test of the Single-Origin Hypothesis. Cladistics, 1999, 15, 253-270.	3.3	23
34	Diversification rates of the "Old Endemic―murine rodents of Luzon Island, Philippines are inconsistent with incumbency effects and ecological opportunity. Evolution; International Journal of Organic Evolution, 2018, 72, 1420-1435.	2.3	20
35	Phylogeography of Marmosa robinsoni: insights into the biogeography of dry forests in northern South America. Journal of Mammalogy, 2014, 95, 1175-1188.	1.3	17
36	Phylogenetic relationships of Chacodelphys (Marsupialia: Didelphidae: Didelphinae) based on "ancient― DNA sequences. Journal of Mammalogy, 2016, 97, 394-404.	1.3	12

#	Article	IF	CITATIONS
37	Tempo and mode of mandibular shape and size evolution reveal mixed support for incumbency effects in two clades of islandâ€endemic rodents (Muridae: Murinae)*. Evolution; International Journal of Organic Evolution, 2019, 73, 1411-1427.	2.3	12
38	Minimal genetic divergence among South American samples of the water opossum <i>Chironectes minimus</i> : evidence for transcontinental gene flow?. Mammalia, 2019, 83, 190-192.	0.7	10
39	Montane regions shape patterns of diversification in small mammals and reptiles from Madagascar's moist evergreen forest. Journal of Biogeography, 2020, 47, 2059-2072.	3.0	10
40	A new species of Batomys (Muridae, Rodentia) from southern Luzon Island, Philippines. Proceedings of the Biological Society of Washington, 2015, 128, 22-39.	0.3	8
41	Resistance of South American opossums to vWF-binding venom C-type lectins. Toxicon, 2020, 178, 92-99.	1.6	8
42	The impact of $\langle scp \rangle Q \langle scp \rangle$ uaternary climate oscillations on divergence times and historical population sizes in $\langle i \rangle \langle scp \rangle$ hylamys $\langle i \rangle$ opossums from the $\langle scp \rangle A \langle scp \rangle$ ndes. Molecular Ecology, 2015, 24, 2495-2506.	3.9	7
43	Dietary morphology of two island-endemic murid rodent clades is consistent with persistent, incumbent-imposed competitive interactions. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192746.	2.6	5
44	Genetic comparisons between Heteromys desmarestianus and the recently described H. nubicolens (Rodentia: Heteromyidae) in northwestern Costa Rica. Mammalian Biology, 2007, 72, 54-61.	1.5	4
45	Morphometric Variation and Phylogeographic Structure in Macrotarsomys bastardi (Rodentia:) Tj ETQq1 1 0.784:	314.rgBT / 1.3	/Oyerlock 10
46	A Review of the Eliurus tanala Complex (Rodentia: Muroidea: Nesomyidae), with Description of a New Species from Dry Forests of Western Madagascar. Bulletin of the American Museum of Natural History, 2019, 430, 1.	3.4	4
47	Ancestrally Reconstructed von Willebrand Factor Reveals Evidence for Trench Warfare Coevolution between Opossums and Pit Vipers. Molecular Biology and Evolution, 2022, 39, .	8.9	4
48	A Revision of the Didelphid Marsupial Genus Marmosa Part 4. Species of the Alstoni Group (Subgenus) Tj ETQq0 (0 o rgBT /0	Ovgrlock 10
49	Systematics of <i>Brucepattersonius</i> Hershkovitz, 1998 (Rodentia, Sigmodontinae): molecular species delimitation and morphological analyses suggest an overestimation in species diversity. Systematics and Biodiversity, 2021, 19, 544-570.	1.2	0