Meharvan Singh

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6258335/meharvan-singh-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

69
papers

4,859
citations

h-index

69
g-index

74
ext. papers

5,227
ext. citations

4.4
avg, IF

5.55
L-index

#	Paper	IF	Citations
69	Neuronal mitochondrial dysfunction in a cellular model of circadian rhythm disruption is rescued by donepezil. <i>Biochemical and Biophysical Research Communications</i> , 2021 , 567, 56-62	3.4	1
68	HIV-1 Impairment via UBE3A and HIV-1 Nef Interactions Utilizing the Ubiquitin Proteasome System. <i>Viruses</i> , 2019 , 11,	6.2	2
67	Signature molecules expressed differentially in a liver disease stage-specific manner by HIV-1 and HCV co-infection. <i>PLoS ONE</i> , 2018 , 13, e0202524	3.7	3
66	inhibition enhances progesterone-induced functional recovery in a mouse model of ischemia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E9668-E967	7 ^{11.5}	14
65	Gonadal Steroid Hormones and Brain Protection 2017 , 355-376		
64	Effects of Oxidative Stress and Testosterone on Pro-Inflammatory Signaling in a Female Rat Dopaminergic Neuronal Cell Line. <i>Endocrinology</i> , 2016 , 157, 2824-35	4.8	35
63	From the 90% to now: A brief historical perspective on more than two decades of estrogen neuroprotection. <i>Brain Research</i> , 2016 , 1633, 96-100	3.7	38
62	Pgrmc1/BDNF Signaling Plays a Critical Role in Mediating Glia-Neuron Cross Talk. <i>Endocrinology</i> , 2016 , 157, 2067-79	4.8	18
61	Total testosterone and neuropsychiatric symptoms in elderly men with Alzheimer disease. <i>Alzheimer Research and Therapy</i> , 2015 , 7, 24	9	5
60	The effects of sigma (II) receptor-selective ligands on muscarinic receptor antagonist-induced cognitive deficits in mice. <i>British Journal of Pharmacology</i> , 2015 , 172, 2519-31	8.6	29
59	protects SH-SY5Y cells against -Butyl hydroperoxide-induced cell death via the ERK and PI3K pathways 2015 , 67, 20-26		
58	Pgrmc1/KLF4 Signaling Mediates the Neuron-Glia Crosstalk As A Neuroprotective Mechanism. <i>FASEB Journal</i> , 2015 , 29, LB498	0.9	
57	ERK5/KLF4 signaling as a common mediator of the neuroprotective effects of both nerve growth factor and hydrogen peroxide preconditioning. <i>Age</i> , 2014 , 36, 9685		29
56	The impact of APOE status on relationship of biomarkers of vascular risk and systemic inflammation to neuropsychiatric symptoms in Alzheimer's disease. <i>Journal of Alzheimer's Disease</i> , 2014 , 40, 887-96	4.3	12
55	Oxidative stress, testosterone, and cognition among Caucasian and Mexican-American men with and without Alzheimer& disease. <i>Journal of Alzheimer</i> & <i>Disease</i> , 2014 , 40, 563-73	4.3	36
54	The Association of Free Testosterone Levels in Men and Lifestyle Factors and Chronic Disease Status: A North Texas Healthy Heart Study. <i>Journal of Primary Care and Community Health</i> , 2014 , 5, 173	-9 ^{2.1}	4
53	Total cholesterol and neuropsychiatric symptoms in Alzheimer's disease: the impact of total cholesterol level and gender. <i>Dementia and Geriatric Cognitive Disorders</i> , 2014 , 38, 300-9	2.6	9

(2009-2014)

52	Sex differences in cognitive impairment and Alzheimer's disease. <i>Frontiers in Neuroendocrinology</i> , 2014 , 35, 385-403	8.9	252
51	Oxidative stress defines the neuroprotective or neurotoxic properties of androgens in immortalized female rat dopaminergic neuronal cells. <i>Endocrinology</i> , 2013 , 154, 4281-92	4.8	50
50	Risk factors for mild cognitive impairment among Mexican Americans. <i>Alzheimer</i> and <i>Dementia</i> , 2013 , 9, 622-631.e1	1.2	54
49	Progesterone-induced neuroprotection: factors that may predict therapeutic efficacy. <i>Brain Research</i> , 2013 , 1514, 98-106	3.7	31
48	Progesterone, brain-derived neurotrophic factor and neuroprotection. <i>Neuroscience</i> , 2013 , 239, 84-91	3.9	45
47	Progesterone and neuroprotection. <i>Hormones and Behavior</i> , 2013 , 63, 284-90	3.7	105
46	Biomarkers of vascular risk, systemic inflammation, and microvascular pathology and neuropsychiatric symptoms in Alzheimer disease. <i>Journal of Alzheimer Disease</i> , 2013 , 35, 363-71	4.3	54
45	Non-genomic mechanisms of progesterone action in the brain. Frontiers in Neuroscience, 2013, 7, 159	5.1	72
44	Neuroprotection and estrogen receptors. <i>Neuroendocrinology</i> , 2012 , 96, 119-30	5.6	68
43	Progesterone increases the release of brain-derived neurotrophic factor from glia via progesterone receptor membrane component 1 (Pgrmc1)-dependent ERK5 signaling. <i>Endocrinology</i> , 2012 , 153, 4389-	-4 0 8	71
42	Cell Models for the Study of Sex Steroid Hormone Neurobiology. <i>Journal of Steroids & Hormonal Science</i> , 2012 , S2,		8
41	Androgens exacerbate motor asymmetry in male rats with unilateral 6-hydroxydopamine lesion. <i>Hormones and Behavior</i> , 2011 , 60, 617-24	3.7	27
40	ERK1/2 and ERK5 have distinct roles in the regulation of brain-derived neurotrophic factor expression. <i>Journal of Neuroscience Research</i> , 2011 , 89, 1542-50	4.4	25
39	Progestins and Neuroprotection: Why the Choice of Progestin Matters 2011 , 29-40		
38	Genistein directly inhibits native and recombinant NMDA receptors. <i>Neuropharmacology</i> , 2010 , 58, 124	6- 5 5\$	16
37	Hormetic effects of serum deprivation on androgen regulation of dopamine cell viability. <i>FASEB Journal</i> , 2010 , 24, 993.7	0.9	
36	Oxidative stress and androgens have a synergistic effect on dopamine cell viability. <i>FASEB Journal</i> , 2010 , 24, 993.6	0.9	
35	The potential for estrogens in preventing Alzheimer's disease and vascular dementia. <i>Therapeutic Advances in Neurological Disorders</i> , 2009 , 2, 31-49	6.6	52

34	The differences in neuroprotective efficacy of progesterone and medroxyprogesterone acetate correlate with their effects on brain-derived neurotrophic factor expression. <i>Endocrinology</i> , 2009 , 150, 3162-8	4.8	61
33	Progesterone potentiates calcium release through IP3 receptors by an Akt-mediated mechanism in hippocampal neurons. <i>Cell Calcium</i> , 2009 , 45, 233-42	4	25
32	Progesterone potentiates IP(3)-mediated calcium signaling through Akt/PKB. <i>Cellular Physiology and Biochemistry</i> , 2008 , 21, 161-72	3.9	33
31	More than a decade of estrogen neuroprotection. Alzheimera and Dementia, 2008, 4, S131-6	1.2	55
30	Estrogens and progesterone as neuroprotectants: what animal models teach us. <i>Frontiers in Bioscience - Landmark</i> , 2008 , 13, 1083-9	2.8	76
29	The Role of Progesterone and its Metabolites in Premenstrual Disorders of Affect 2008 , 483-491		
28	Progesterone increases brain-derived neuroptrophic factor expression and protects against glutamate toxicity in a mitogen-activated protein kinase- and phosphoinositide-3 kinase-dependent manner in cerebral cortical explants. <i>Journal of Neuroscience Research</i> , 2007 , 85, 2441-9	4.4	130
27	A novel organotypic culture model of the postnatal mouse retina allows the study of glutamate-mediated excitotoxicity. <i>Journal of Neuroscience Methods</i> , 2007 , 159, 35-42	3	34
26	Activation of a membrane-associated androgen receptor promotes cell death in primary cortical astrocytes. <i>Endocrinology</i> , 2007 , 148, 2458-64	4.8	68
25	ERK/MAPK pathway regulates GABAA receptors. <i>Journal of Neurobiology</i> , 2006 , 66, 1467-74		34
24	Dihydrotestosterone differentially modulates the mitogen-activated protein kinase and the phosphoinositide 3-kinase/Akt pathways through the nuclear and novel membrane androgen receptor in C6 cells. <i>Endocrinology</i> , 2006 , 147, 2028-34	4.8	93
23	Novel mechanisms for estrogen-induced neuroprotection. <i>Experimental Biology and Medicine</i> , 2006 , 231, 514-21	3.7	83
22	Progesterone-induced neuroprotection. <i>Endocrine</i> , 2006 , 29, 271-4		57
21	PKC modulation of GABAA receptor endocytosis and function is inhibited by mutation of a dileucine motif within the receptor beta 2 subunit. <i>Neuropharmacology</i> , 2005 , 48, 181-94	5.5	52
20	Mechanisms of progesterone-induced neuroprotection. <i>Annals of the New York Academy of Sciences</i> , 2005 , 1052, 145-51	6.5	40
19	Neuroendocrine mechanism for tolerance to cerebral ischemia-reperfusion injury in male rats. <i>Journal of Neurobiology</i> , 2005 , 62, 341-51		39
18	Protein kinase C activity is necessary for estrogen-induced Erk phosphorylation in neocortical explants. <i>Neurochemical Research</i> , 2005 , 30, 779-90	4.6	18
17	Consortium for the Assessment of Research on Progestins and Estrogens (CARPE) Fort Worth, Texas August 1-3, 2003. <i>Journal of Women Health</i> , 2004 , 13, 1165-8	3	6

LIST OF PUBLICATIONS

16	Constitutive GABAA receptor endocytosis is dynamin-mediated and dependent on a dileucine AP2 adaptin-binding motif within the beta 2 subunit of the receptor. <i>Journal of Biological Chemistry</i> , 2003 , 278, 24046-52	5.4	75
15	Estradiol-induced phosphorylation of ERK1/2 in explants of the mouse cerebral cortex: the roles of heat shock protein 90 (Hsp90) and MEK2. <i>Journal of Neurobiology</i> , 2002 , 50, 1-12		45
14	ER-X: a novel, plasma membrane-associated, putative estrogen receptor that is regulated during development and after ischemic brain injury. <i>Journal of Neuroscience</i> , 2002 , 22, 8391-401	6.6	476
13	Ovarian hormones elicit phosphorylation of Akt and extracellular-signal regulated kinase in explants of the cerebral cortex. <i>Endocrine</i> , 2001 , 14, 407-15		159
12	Estradiol (E2) elicits SRC phosphorylation in the mouse neocortex: the initial event in E2 activation of the MAPK cascade?. <i>Endocrinology</i> , 2001 , 142, 5145-8	4.8	42
11	Estrogen-induced activation of the mitogen-activated protein kinase cascade in the cerebral cortex of estrogen receptor-alpha knock-out mice. <i>Journal of Neuroscience</i> , 2000 , 20, 1694-700	6.6	232
10	Novel mechanisms of estrogen action in the brain: new players in an old story. <i>Frontiers in Neuroendocrinology</i> , 1999 , 20, 97-121	8.9	362
9	Estrogen-induced activation of mitogen-activated protein kinase in cerebral cortical explants: convergence of estrogen and neurotrophin signaling pathways. <i>Journal of Neuroscience</i> , 1999 , 19, 1179-	-88	426
8	Matrix metalloproteinase-9 in cerebral aneurysms. <i>Neurosurgery</i> , 1997 , 41, 642-66; discussion 646-7	3.2	110
7	Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer's disease. <i>American Journal of Medicine</i> , 1997 , 103, 19S-25S	2.4	212
6	Nerve growth factor (NGF) regulation of estrogen receptors in explant cultures of the developing forebrain. <i>Journal of Neurobiology</i> , 1996 , 31, 77-87		47
5	The potential role for estrogen replacement therapy in the treatment of the cognitive decline and neurodegeneration associated with Alzheimer's disease. <i>Neurobiology of Aging</i> , 1994 , 15 Suppl 2, S195-	7 ^{5.6}	126
4	Ovarian steroid deprivation results in a reversible learning impairment and compromised cholinergic function in female Sprague-Dawley rats. <i>Brain Research</i> , 1994 , 644, 305-12	3.7	419
3	Opiate modulation of growth hormone secretion is compromised during the steroid-induced luteinizing hormone surge. <i>Neuroendocrinology</i> , 1992 , 55, 214-20	5.6	4
2	Opiate stimulation of prolactin secretion is reversed by ovarian hormone treatment. Neuroendocrinology, 1992 , 56, 195-203	5.6	7
1	Estradiol (E2) Elicits Src Phosphorylation in the Mouse Neocortex: The Initial Event in E2 Activation of the MAPK Cascade?		24