
Simona Salati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6258305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pulsed Electromagnetic Fields: A Novel Attractive Therapeutic Opportunity for Neuroprotection After Acute Cerebral Ischemia. Neuromodulation, 2022, 25, 1240-1247.	0.8	10
2	A Systematic Review about Imaging and Histopathological Findings for Detecting and Evaluating Electroporation Based Treatments Response. International Journal of Environmental Research and Public Health, 2021, 18, 5592.	2.6	19
3	Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications. International Journal of Molecular Sciences, 2021, 22, 809.	4.1	41
4	Pulsed Electromagnetic Fields Stimulate HIF-1α-Independent VEGF Release in 1321N1 Human Astrocytes Protecting Neuron-like SH-SY5Y Cells from Oxygen-Glucose Deprivation. International Journal of Molecular Sciences, 2020, 21, 8053.	4.1	9
5	Bone Morphogenetic Protein-2 Signaling in the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Induced by Pulsed Electromagnetic Fields. International Journal of Molecular Sciences, 2020, 21, 2104.	4.1	22
6	Calreticulin Ins5 and Del52 mutations impair unfolded protein and oxidative stress responses in K562 cells expressing CALR mutants. Scientific Reports, 2019, 9, 10558.	3.3	31
7	Calreticulin Affects Hematopoietic Stem/Progenitor Cell Fate by Impacting Erythroid and Megakaryocytic Differentiation. Stem Cells and Development, 2018, 27, 225-236.	2.1	17
8	Role of TGF â€Î²1/miRâ€382â€5p/ SOD 2 axis in the induction of oxidative stress in CD 34+ cells from primary myelofibrosis. Molecular Oncology, 2018, 12, 2102-2123.	4.6	19
9	Calreticulin Ins5 and Del52 Mutations Impair Unfolded Protein and Oxidative Stress Responses in Hematopoietic Cells. Blood, 2018, 132, 4332-4332.	1.4	1
10	Differential proteomic profile of leukemic CD34+ progenitor cells from chronic myeloid leukemia patients. Oncotarget, 2018, 9, 21758-21769.	1.8	3
11	Comparative Genomic and Expression Analysis of Chronic and Blast-Phase Cells in Patients with Myeloproliferative Neoplasms. Blood, 2018, 132, 1777-1777.	1.4	0
12	Absence of Calreticulin Phenocopies Cellular Abnormalities Induced By Calreticulin Exon-9 Mutation in Myeloproliferative Neoplasms. Blood, 2018, 132, 1780-1780.	1.4	0
13	CALR mutational status identifies different disease subtypes of essential thrombocythemia showing distinct expression profiles. Blood Cancer Journal, 2017, 7, 638.	6.2	27
14	Role of miR-34a-5p in Hematopoietic Progenitor Cells Proliferation and Fate Decision: Novel Insights into the Pathogenesis of Primary Myelofibrosis. International Journal of Molecular Sciences, 2017, 18, 145.	4.1	14
15	miR-494-3p overexpression promotes megakaryocytopoiesis in primary myelofibrosis hematopoietic stem/progenitor cells by targeting SOCS6. Oncotarget, 2017, 8, 21380-21397.	1.8	13
16	Deregulated expression of miR-29a-3p, miR-494-3p and miR-660-5p affects sensitivity to tyrosine kinase inhibitors in CML leukemic stem cells. Oncotarget, 2017, 8, 49451-49469.	1.8	49
17	miR-382-5p Controls Hematopoietic Stem Cell Differentiation Through the Downregulation of MXD1. Stem Cells and Development, 2016, 25, 1433-1443.	2.1	31
18	Integrative analysis of copy number and gene expression data suggests novel pathogenetic mechanisms in primary myelofibrosis. International Journal of Cancer, 2016, 138, 1657-1669.	5.1	6

SIMONA SALATI

#	Article	IF	CITATIONS
19	MAF Induces Inflammatory Mediators Involved in the Pathogenesis of Primary Myelofibrosis. Blood, 2016, 128, 3132-3132.	1.4	Ο
20	MiR-494-3p Overexpression Leads to SOCS6 Downregulation and Supports Megakaryocytopoiesis in Primary Myelofibrosis CD34+ Hematopoietic Stem/Progenitor Cells. Blood, 2016, 128, 4272-4272.	1.4	0
21	Abnormal expression patterns of <i>WT1-as, MEG3</i> and <i>ANRIL</i> long non-coding RNAs in CD34+ cells from patients with primary myelofibrosis and their clinical correlations. Leukemia and Lymphoma, 2015, 56, 492-496.	1.3	14
22	Integrative Analysis of Copy Number and Gene Expression Data Suggests Novel Pathogenetic Mechanisms in Primary Myelofibrosis. Blood, 2015, 126, 2830-2830.	1.4	0
23	FOXP1 and TP63 involvement in the progression of myelodysplastic syndrome with 5q- and additional cytogenetic abnormalities. BMC Cancer, 2014, 14, 396.	2.6	10
24	miRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis. Blood, 2014, 124, e21-e32.	1.4	105
25	C-Myb Restrains Megakaryopoiesis through the Hsa-MiR-486-3p-Driven Down-Regulation of C-Maf. Blood, 2014, 124, 5124-5124.	1.4	0
26	Co-Culture of Hematopoietic Stem/Progenitor Cells with Human Osteblasts Favours Mono/Macrophage Differentiation at the Expense of the Erythroid Lineage. PLoS ONE, 2013, 8, e53496.	2.5	16
27	Integrative Analysis Of mRNA/miRNA Expression Profiles Identified JARID2 As a Shared Target Of Deregulated Mirnas In Primary Myelofibrosis. Blood, 2013, 122, 1600-1600.	1.4	Ο
28	Proteomic Profile Of CD34+ Cells From Chronic Myeloid Leukemia Patients and From Normal Donors. Blood, 2013, 122, 2712-2712.	1.4	0
29	Purinergic signaling inhibits human acute myeloblastic leukemia cell proliferation, migration, and engraftment in immunodeficient mice. Blood, 2012, 119, 217-226.	1.4	52
30	Valproic acid triggers erythro/megakaryocyte lineage decision through induction of GFI1B and MLLT3 expression. Experimental Hematology, 2012, 40, 1043-1054.e6.	0.4	13
31	Proteomic Signature of CD34+ Cells From Chronic Myeloid Leukemia Patients. Blood, 2012, 120, 3733-3733.	1.4	0
32	Regulatory Mrna/Microrna Networks in CD34+ Cells From Primary Myelofibrosis Blood, 2012, 120, 2854-2854.	1.4	0
33	c-myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression. Blood, 2010, 116, e99-e110.	1.4	95
34	High Frequency of Endothelial Colony Forming Cells Marks a Non-Active Myeloproliferative Neoplasm with High Risk of Splanchnic Vein Thrombosis. PLoS ONE, 2010, 5, e15277.	2.5	30
35	Molecular and functional analysis of the stem cell compartment of chronic myelogenous leukemia reveals the presence of a CD34â^' cell population with intrinsic resistance to imatinib. Blood, 2009, 114, 5191-5200.	1.4	62
36	Role of CD34 Antigen in Myeloid Differentiation of Human Hematopoietic Progenitor Cells. Stem Cells, 2008, 26, 950-959.	3.2	30

SIMONA SALATI

#	Article	IF	CITATIONS
37	Targeting LSCs: powering an old tool. Blood, 2008, 111, 5423-5424.	1.4	1
38	Signal control of hematopoietic stem cell fate: Wnt, Notch, and Hedgehog as the usual suspects. Current Opinion in Hematology, 2008, 15, 319-325.	2.5	49
39	Eosinophils, but not neutrophils, exhibit an efficient DNA repair machinery and high nucleolar activity. Haematologica, 2007, 92, 1311-1318.	3.5	18
40	The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration. Blood, 2007, 109, 533-542.	1.4	93
41	Molecular Profiling of CD34+Cells in Idiopathic Myelofibrosis Identifies a Set of Disease-Associated Genes and Reveals the Clinical Significance of Wilms' Tumor Gene 1 (WT1). Stem Cells, 2007, 25, 165-173.	3.2	111
42	Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin (IL)-10++IL-12low/neg accessory cells with dendritic-cell features. Blood, 2006, 108, 218-227.	1.4	226
43	Virally mediated MafB transduction induces the monocyte commitment of human CD34+ hematopoietic stem/progenitor cells. Cell Death and Differentiation, 2006, 13, 1686-1696.	11.2	67
44	ldentification of a molecular signature predictive of sensitivity to differentiation induction in acute myeloid leukemia. Leukemia, 2006, 20, 1751-1758.	7.2	38
45	The Kinetic Status of Hematopoietic Stem Cell Subpopulations Underlies a Differential Expression of Genes Involved in Self-Renewal, Commitment, and Engraftment. Stem Cells, 2005, 23, 496-506.	3.2	45
46	Correlation between differentiation plasticity and mRNA expression profiling of CD34+-derived CD14â^' and CD14+ human normal myeloid precursors. Cell Death and Differentiation, 2005, 12, 1588-1600.	11.2	22
47	In Vitro and In Vivo Induction of Human Hematopoietic Stem Cell Migration by Extracellular UTP Blood, 2005, 106, 1730-1730.	1.4	0