Jesper Holck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6258304/publications.pdf

Version: 2024-02-01

361413 315739 1,596 41 20 38 citations h-index g-index papers 42 42 42 2509 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Discovery of a Novel Glucuronan Lyase System in <i>Trichoderma parareesei</i> . Applied and Environmental Microbiology, 2022, 88, AEM0181921.	3.1	8
2	The Endo- $\hat{l}\pm(1,4)$ Specific Fucoidanase Fhf2 From Formosa haliotis Releases Highly Sulfated Fucoidan Oligosaccharides. Frontiers in Plant Science, 2022, 13, 823668.	3.6	11
3	The Endo- $\hat{l}\pm(1,3)$ -Fucoidanase Mef2 Releases Uniquely Branched Oligosaccharides from Saccharina latissima Fucoidans. Marine Drugs, 2022, 20, 305.	4.6	9
4	Utilization of industrial citrus pectin side streams for enzymatic production of human milk oligosaccharides. Carbohydrate Research, 2022, 519, 108627.	2.3	11
5	Specificities and Synergistic Actions of Novel PL8 and PL7 Alginate Lyases from the Marine Fungus Paradendryphiella salina. Journal of Fungi (Basel, Switzerland), 2021, 7, 80.	3.5	17
6	A novel thermostable prokaryotic fucoidan active sulfatase PsFucS1 with an unusual quaternary hexameric structure. Scientific Reports, 2021, 11, 19523.	3.3	8
7	High throughput in vitro characterization of pectins for pig(let) nutrition. Animal Microbiome, 2021, 3, 69.	3.8	7
8	Improvement of the Transglycosylation Efficiency of a Lacto-N-Biosidase from Bifidobacterium bifidum by Protein Engineering. Applied Sciences (Switzerland), 2021, 11, 11493.	2.5	7
9	Laccase-Catalyzed Oxidation of Lignin Induces Production of H ₂ O ₂ . ACS Sustainable Chemistry and Engineering, 2020, 8, 831-841.	6.7	48
10	Improved Transglycosylation by a Xyloglucan-Active α-l-Fucosidase from Fusarium graminearum. Journal of Fungi (Basel, Switzerland), 2020, 6, 295.	3.5	5
11	Functional Characterization of a New GH107 Endo- \hat{l} ±-(1,4)-Fucoidanase from the Marine Bacterium Formosa haliotis. Marine Drugs, 2020, 18, 562.	4.6	23
12	Loss of AA13 LPMOs impairs degradation of resistant starch and reduces the growth of Aspergillus nidulans. Biotechnology for Biofuels, 2020, 13, 135.	6.2	8
13	Comparative Characterization of Aspergillus Pectin Lyases by Discriminative Substrate Degradation Profiling. Frontiers in Bioengineering and Biotechnology, 2020, 8, 873.	4.1	17
14	Enzyme-Assisted Fucoidan Extraction from Brown Macroalgae Fucus distichus subsp. evanescens and Saccharina latissima. Marine Drugs, 2020, 18, 296.	4.6	71
15	Structural and functional aspects of mannuronic acid–specific PL6 alginate lyase from the human gut microbe Bacteroides cellulosilyticus. Journal of Biological Chemistry, 2019, 294, 17915-17930.	3.4	40
16	A carbohydrate-binding family 48 module enables feruloyl esterase action on polymeric arabinoxylan. Journal of Biological Chemistry, 2019, 294, 17339-17353.	3.4	21
17	Novel xylanolytic triple domain enzyme targeted at feruloylated arabinoxylan degradation. Enzyme and Microbial Technology, 2019, 129, 109353.	3.2	15
18	Laccase Induced Lignin Radical Formation Kinetics Evaluated by Electron Paramagnetic Resonance Spectroscopy. ACS Sustainable Chemistry and Engineering, 2019, 7, 10425-10434.	6.7	16

#	Article	IF	Citations
19	Enzyme kinetics of fungal glucuronoyl esterases on natural lignin-carbohydrate complexes. Applied Microbiology and Biotechnology, 2019, 103, 4065-4075.	3.6	17
20	Substrate specificity of novel GH16 endo- \hat{l}^2 -(1â†'3)-galactanases acting on linear and branched \hat{l}^2 -(1â†'3)-galactooligosaccharides. Journal of Biotechnology, 2019, 290, 44-52.	3.8	4
21	Identification and characterization of GH11 xylanase and GH43 xylosidase from the chytridiomycetous fungus, Rhizophlyctis rosea. Applied Microbiology and Biotechnology, 2019, 103, 777-791.	3. 6	22
22	Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial. Gut, 2019, 68, 83-93.	12.1	278
23	The natural catalytic function of CuGE glucuronoyl esterase in hydrolysis of genuine lignin–carbohydrate complexes from birch. Biotechnology for Biofuels, 2018, 11, 71.	6.2	43
24	Substrate specificity and transfucosylation activity of GH29 \hat{l}_{\pm} -l-fucosidases for enzymatic production of human milk oligosaccharides. New Biotechnology, 2018, 41, 34-45.	4.4	58
25	A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults. Nature Communications, 2018, 9, 4630.	12.8	124
26	Novel Enzyme Actions for Sulphated Galactofucan Depolymerisation and a New Engineering Strategy for Molecular Stabilisation of Fucoidan Degrading Enzymes. Marine Drugs, 2018, 16, 422.	4.6	27
27	Loop engineering of an α-1,3/4-l-fucosidase for improved synthesis of human milk oligosaccharides. Enzyme and Microbial Technology, 2018, 115, 37-44.	3.2	35
28	Multiple Reaction Monitoring for quantitative laccase kinetics by LC-MS. Scientific Reports, 2018, 8, 8114.	3.3	22
29	Loop Protein Engineering for Improved Transglycosylation Activity of a βâ€ <i>N</i> â€Acetylhexosaminidase. ChemBioChem, 2018, 19, 1858-1865.	2.6	28
30	Oxidation of lignin in hemp fibres by laccase: Effects on mechanical properties of hemp fibres and unidirectional fibre/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2017, 95, 377-387.	7.6	27
31	Characterization of two novel bacterial type A exo-chitobiose hydrolases having C-terminal 5/12-type carbohydrate-binding modules. Applied Microbiology and Biotechnology, 2017, 101, 4533-4546.	3.6	5
32	Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiology Ecology, 2017, 93, .	2.7	203
33	Characterization and immobilization of engineered sialidases from Trypanosoma rangeli for transsialylation. AIMS Molecular Science, 2017, 4, 140-163.	0.5	8
34	Quantitative enzymatic production of sialylated galactooligosaccharides with an engineered sialidase from Trypanosoma rangeli. Enzyme and Microbial Technology, 2016, 82, 42-50.	3.2	6
35	It All Starts with a Sandwich: Identification of Sialidases with Trans-Glycosylation Activity. PLoS ONE, 2016, 11, e0158434.	2.5	17
36	Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by Trypanosoma cruzi trans-sialidase. New Biotechnology, 2014, 31, 156-165.	4.4	36

#	Article	IF	CITATIONS
37	A combined metabolomic and phylogenetic study reveals putatively prebiotic effects of high molecular weight arabino-oligosaccharides when assessed by inÂvitro fermentation in bacterial communities derived from humans. Anaerobe, 2014, 28, 68-77.	2.1	35
38	Feruloylated and Nonferuloylated Arabino-oligosaccharides from Sugar Beet Pectin Selectively Stimulate the Growth of Bifidobacterium spp. in Human Fecal in Vitro Fermentations. Journal of Agricultural and Food Chemistry, 2011, 59, 6511-6519.	5.2	70
39	Kinetics of Enzyme-Catalyzed Cross-Linking of Feruloylated Arabinan from Sugar Beet. Journal of Agricultural and Food Chemistry, 2011, 59, 11598-11607.	5. 2	18
40	Tailored enzymatic production of oligosaccharides from sugar beet pectin and evidence of differential effects of a single DP chain length difference on human faecal microbiota composition after in vitro fermentation. Process Biochemistry, 2011, 46, 1039-1049.	3.7	86
41	<i>In Vitro</i> Fermentation of Sugar Beet Arabino-Oligosaccharides by Fecal Microbiota Obtained from Patients with Ulcerative Colitis To Selectively Stimulate the Growth of Bifidobacterium spp. and Lactobacillus spp. Applied and Environmental Microbiology, 2011, 77, 8336-8344.	3.1	69