
Laura C Greaves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6258049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial complex I subunit deficiency promotes pancreatic α-cell proliferation. Molecular Metabolism, 2022, 60, 101489.	3.0	1
2	Automated quantitative high-throughput multiplex immunofluorescence pipeline to evaluate OXPHOS defects in formalin-fixed human prostate tissue. Scientific Reports, 2022, 12, 6660.	1.6	2
3	Mitochondrial <scp>DNA</scp> mutations in ageing and cancer. Molecular Oncology, 2022, 16, 3276-3294.	2.1	18
4	Ageâ€essociated mitochondrial complex I deficiency is linked to increased stem cell proliferation rates in the mouse colon. Aging Cell, 2021, 20, e13321.	3.0	8
5	Aberrant mitochondrial function in ageing and cancer. Biogerontology, 2020, 21, 445-459.	2.0	17
6	Mitochondrial dysfunction impairs osteogenesis, increases osteoclast activity, and accelerates age related bone loss. Scientific Reports, 2020, 10, 11643.	1.6	58
7	Age-associated mitochondrial DNA mutations cause metabolic remodeling that contributes to accelerated intestinal tumorigenesis. Nature Cancer, 2020, 1, 976-989.	5.7	69
8	The rise and rise of mitochondrial DNA mutations. Open Biology, 2020, 10, 200061.	1.5	89
9	Design and baseline characteristics of the Biomarkers Of Risk In Colorectal Cancer (BORICC) Follow-Up study: A 12+ years follow-up. Nutrition and Health, 2019, 25, 231-238.	0.6	2
10	Effects of obesity and weight loss on mitochondrial structure and function and implications for colorectal cancer risk. Proceedings of the Nutrition Society, 2019, 78, 426-437.	0.4	17
11	A Bioreactor Technology for Modeling Fibrosis in Human and Rodent Precision ut Liver Slices. Hepatology, 2019, 70, 1377-1391.	3.6	66
12	Lengthâ€independent telomere damage drives postâ€mitotic cardiomyocyte senescence. EMBO Journal, 2019, 38, .	3.5	307
13	A novel histochemistry assay to assess and quantify focal cytochrome <i>c</i> oxidase deficiency. Journal of Pathology, 2018, 245, 311-323.	2.1	17
14	Predominant Asymmetrical Stem Cell Fate Outcome Limits the Rate of Niche Succession in Human Colonic Crypts. EBioMedicine, 2018, 31, 166-173.	2.7	19
15	Impact of Age-Related Mitochondrial Dysfunction and Exercise on Intestinal Microbiota Composition. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 571-578.	1.7	28
16	Roles of Mitochondrial DNA Mutations in Stem Cell Ageing. Genes, 2018, 9, 182.	1.0	19
17	Inherited pathogenic mitochondrial DNA mutations and gastrointestinal stem cell populations. Journal of Pathology, 2018, 246, 427-432.	2.1	13
18	Multipotent Basal Stem Cells, Maintained in Localized Proximal Niches, Support Directed Long-Ranging Epithelial Flows in Human Prostates. Cell Reports, 2017, 20, 1609-1622.	2.9	64

LAURA C GREAVES

#	Article	IF	CITATIONS
19	Mitochondrial DNA changes in pedunculopontine cholinergic neurons in Parkinson disease. Annals of Neurology, 2017, 82, 1016-1021.	2.8	45
20	Mitochondria are required for proâ€ageing features of the senescent phenotype. EMBO Journal, 2016, 35, 724-742.	3.5	527
21	A Phenotype-Driven Approach to Generate Mouse Models with Pathogenic mtDNA Mutations Causing Mitochondrial Disease. Cell Reports, 2016, 16, 2980-2990.	2.9	102
22	Involving older people in the design, development, and delivery of an innovative module on aging for undergraduate students. Educational Gerontology, 2016, 42, 698-705.	0.7	8
23	Unique quadruple immunofluorescence assay demonstrates mitochondrial respiratory chain dysfunction in osteoblasts of aged and PolgAâ^'/â^' mice. Scientific Reports, 2016, 6, 31907.	1.6	13
24	Novel <i>MTND1</i> mutations cause isolated exercise intolerance, complex I deficiency and increased assembly factor expression. Clinical Science, 2015, 128, 895-904.	1.8	21
25	The presence of highly disruptive 16S rRNA mutations in clinical samples indicates a wider role for mutations of the mitochondrial ribosome in human disease. Mitochondrion, 2015, 25, 17-27.	1.6	29
26	SCNT-Derived ESCs with Mismatched Mitochondria Trigger an Immune Response in Allogeneic Hosts. Cell Stem Cell, 2015, 16, 33-38.	5.2	52
27	Clonal Expansion of Early to Mid-Life Mitochondrial DNA Point Mutations Drives Mitochondrial Dysfunction during Human Ageing. PLoS Genetics, 2014, 10, e1004620.	1.5	115
28	Human stem cell aging: do mitochondrial <scp>DNA</scp> mutations have a causal role?. Aging Cell, 2014, 13, 201-205.	3.0	30
29	Bmi1 enhances skeletal muscle regeneration through MT1-mediated oxidative stress protection in a mouse model of dystrophinopathy. Journal of Experimental Medicine, 2014, 211, 2617-2633.	4.2	34
30	The role of the mitochondrial ribosome in human disease: searching for mutations in 12S mitochondrial rRNA with high disruptive potential. Human Molecular Genetics, 2014, 23, 949-967.	1.4	35
31	Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature Communications, 2014, 5, 4172.	5.8	596
32	Similar patterns of clonally expanded somatic mtDNA mutations in the colon of heterozygous mtDNA mutator mice and ageing humans. Mechanisms of Ageing and Development, 2014, 139, 22-30.	2.2	33
33	Bmi1 enhances skeletal muscle regeneration through MT1-mediated oxidative stress protection in a mouse model of dystrophinopathy. Journal of Cell Biology, 2014, 207, 2075OIA222.	2.3	0
34	Comparison of Mitochondrial Mutation Spectra in Ageing Human Colonic Epithelium and Disease: Absence of Evidence for Purifying Selection in Somatic Mitochondrial DNA Point Mutations. PLoS Genetics, 2012, 8, e1003082.	1.5	61
35	Mitochondrial DNA and disease. Journal of Pathology, 2012, 226, 274-286.	2.1	239
36	Differences in the accumulation of mitochondrial defects with age in mice and humans. Mechanisms of Ageing and Development, 2011, 132, 588-591.	2.2	26

LAURA C GREAVES

#	Article	IF	CITATIONS
37	<i>In situ</i> lineage tracking of human prostatic epithelial stem cell fate reveals a common clonal origin for basal and luminal cells. Journal of Pathology, 2011, 225, 181-188.	2.1	62
38	Defects in multiple complexes of the respiratory chain are present in ageing human colonic crypts. Experimental Gerontology, 2010, 45, 573-579.	1.2	52
39	Ageâ€associated mitochondrial DNA mutations lead to small but significant changes in cell proliferation and apoptosis in human colonic crypts. Aging Cell, 2010, 9, 96-99.	3.0	56
40	Somatic Mitochondrial DNA Deletions Accumulate to High Levels in Aging Human Extraocular Muscles. , 2010, 51, 3347.		48
41	Mitochondrial DNA Defects and Selective Extraocular Muscle Involvement in CPEO. , 2010, 51, 3340.		58
42	Modelling mitochondrial DNA mutations in bacterial cytochrome <i>c</i> oxidase: Link to colon cancer?. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E57.	3.3	1
43	Locating the stem cell niche and tracing hepatocyte lineages in human liver. Hepatology, 2009, 49, 1655-1663.	3.6	135
44	A Methodological Approach to Tracing Cell Lineage in Human Epithelial Tissues. Stem Cells, 2009, 27, 1410-1420.	1.4	72
45	Quantification of mitochondrial DNA mutation load. Aging Cell, 2009, 8, 566-572.	3.0	36
46	Detection of cytochrome c oxidase activity and mitochondrial proteins in single cells. Journal of Neuroscience Methods, 2009, 184, 310-319.	1.3	30
47	Mitochondrial DNA mutations and ageing. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 1015-1020.	1.1	45
48	Mechanisms of Field Cancerization in the Human Stomach: The Expansion and Spread of Mutated Gastric Stem Cells. Gastroenterology, 2008, 134, 500-510.	0.6	222
49	The ageing mitochondrial genome. Nucleic Acids Research, 2007, 35, 7399-7405.	6.5	76
50	Mitochondrial DNA Mutations and Aging. Annals of the New York Academy of Sciences, 2007, 1100, 227-240.	1.8	50
51	Mitochondrial DNA mutations in human disease. IUBMB Life, 2006, 58, 143-151.	1.5	37
52	Interactions of skin thickness and physicochemical properties of test compounds in percutaneous penetration studies. International Archives of Occupational and Environmental Health, 2006, 79, 405-413.	1.1	85
53	Clonal Expansion in the Human Gut: Mitochondrial DNA Mutations Show Us the Way. Cell Cycle, 2006, 5, 808-811.	1.3	43
54	Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 714-719.	3.3	269

#	Article	IF	CITATIONS
55	Mitochondrial DNA mutations in human colonic crypt stem cells. Journal of Clinical Investigation, 2003, 112, 1351-1360.	3.9	454