
Michael G Resch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6258039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineered yeast tolerance enables efficient production from toxified lignocellulosic feedstocks. Science Advances, 2021, 7, .	10.3	21
2	Analysis, Impacts, and Solutions to Biomass Variability for Production of Fuels and Value-Added Products. ACS Sustainable Chemistry and Engineering, 2020, 8, 15375-15377.	6.7	4
3	Multiscale Characterization of Lignocellulosic Biomass Variability and Its Implications to Preprocessing and Conversion: a Case Study for Corn Stover. ACS Sustainable Chemistry and Engineering, 2020, 8, 3218-3230.	6.7	28
4	Impacts of Inorganic Material (Total Ash) on Surface Energy, Wettability, and Cohesion of Corn Stover. ACS Sustainable Chemistry and Engineering, 2020, 8, 2061-2072.	6.7	13
5	Throughput, Reliability, and Yields of a Pilot-Scale Conversion Process for Production of Fermentable Sugars from Lignocellulosic Biomass: A Study on Feedstock Ash and Moisture. ACS Sustainable Chemistry and Engineering, 2020, 8, 2008-2015.	6.7	16
6	Dramatic performance of <i>Clostridium thermocellum</i> explained by its wide range of cellulase modalities. Science Advances, 2016, 2, e1501254.	10.3	99
7	Reductive Catalytic Fractionation of Corn Stover Lignin. ACS Sustainable Chemistry and Engineering, 2016, 4, 6940-6950.	6.7	235
8	Lignin depolymerization by fungal secretomes and a microbial sink. Green Chemistry, 2016, 18, 6046-6062.	9.0	84
9	Interrelationships between cellulase activity and cellulose particle morphology. Cellulose, 2016, 23, 2349-2361.	4.9	8
10	Oâ€glycosylation effects on family 1 carbohydrateâ€binding module solution structures. FEBS Journal, 2015, 282, 4341-4356.	4.7	18
11	Editorial overview: Energy: Prospects for fuels and chemicals from a biomass-based biorefinery using post-genomic chemical biology tools. Current Opinion in Chemical Biology, 2015, 29, v-vii.	6.1	2
12	Alkaline Pretreatment of Switchgrass. ACS Sustainable Chemistry and Engineering, 2015, 3, 1479-1491.	6.7	94
13	Molecular-scale features that govern the effects of O-glycosylation on a carbohydrate-binding module. Chemical Science, 2015, 6, 7185-7189.	7.4	30
14	Mechanisms employed by cellulase systems to gain access through the complex architecture of lignocellulosic substrates. Current Opinion in Chemical Biology, 2015, 29, 100-107.	6.1	49
15	Clean Fractionation Pretreatment Reduces Enzyme Loadings for Biomass Saccharification and Reveals the Mechanism of Free and Cellulosomal Enzyme Synergy. ACS Sustainable Chemistry and Engineering, 2014, 2, 1377-1387.	6.7	35
16	Specificity of <i>O</i> -glycosylation in enhancing the stability and cellulose binding affinity of Family 1 carbohydrate-binding modules. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7612-7617.	7.1	85
17	Engineering plant cell walls: tuning lignin monomer composition for deconstructable biofuel feedstocks or resilient biomaterials. Green Chemistry, 2014, 16, 2627.	9.0	60
18	Predicting Enzyme Adsorption to Lignin Films by Calculating Enzyme Surface Hydrophobicity. Journal of Biological Chemistry, 2014, 289, 20960-20969.	3.4	116

MICHAEL G RESCH

#	Article	IF	CITATIONS
19	Response to Comment on "Revealing Nature's Cellulase Diversity: The Digestion Mechanism of <i>Caldicellulosiruptor bescii</i> CelA― Science, 2014, 344, 578-578.	12.6	1
20	Revealing Nature's Cellulase Diversity: The Digestion Mechanism of <i>Caldicellulosiruptor bescii</i> CelA. Science, 2013, 342, 1513-1516.	12.6	253
21	Computationally Designed Peptide Inhibitors of the Ubiquitin E3 Ligase SCF ^{Fbx4} . ChemBioChem, 2013, 14, 445-451.	2.6	7
22	Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy and Environmental Science, 2013, 6, 1858.	30.8	128
23	Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14646-14651.	7.1	149
24	Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16588-16593.	7.1	84
25	The O-Glycosylated Linker from the Trichoderma reesei Family 7 Cellulase Is a Flexible, Disordered Protein. Biophysical Journal, 2010, 99, 3773-3781.	0.5	96
26	Determinants of Histone H4 N-terminal Domain Function during Nucleosomal Array Oligomerization. Journal of Biological Chemistry, 2009, 284, 16716-16722.	3.4	32
27	In vitro chromatin self-association and its relevance to genome architectureThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology. 2006. 84. 411-417.	2.0	15