Samir D Mathur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6257810/publications.pdf Version: 2024-02-01

SAMID D MATHIID

#	Article	IF	CITATIONS
1	The information paradox: a pedagogical introduction. Classical and Quantum Gravity, 2009, 26, 224001.	4.0	613
2	AdS/CFT duality and the black hole information paradox. Nuclear Physics B, 2002, 623, 342-394.	2.5	412
3	Universality of Low Energy Absorption Cross Sections for Black Holes. Physical Review Letters, 1997, 78, 417-419.	7.8	256
4	Comparing decay rates for black holes and D-branes. Nuclear Physics B, 1996, 478, 561-576.	2.5	236
5	Statistical Interpretation of the Bekenstein Entropy for Systems with a Stretched Horizon. Physical Review Letters, 2002, 88, 211303.	7.8	204
6	Metric of the multiply wound rotating string. Nuclear Physics B, 2001, 610, 49-76.	2.5	192
7	Correlation Functions for M N / S N Orbifolds. Communications in Mathematical Physics, 2001, 219, 399-442.	2.2	191
8	Dual geometries for a set of 3-charge microstates. Nuclear Physics B, 2004, 701, 357-379.	2.5	179
9	3-charge geometries and their CFT duals. Nuclear Physics B, 2005, 710, 425-463.	2.5	151
10	Three-Point Functions for M N / S N Orbifolds¶with? = 4 Supersymmetry. Communications in Mathematical Physics, 2002, 227, 385-419.	2.2	130
11	Constructing â€~hair' for the three charge hole. Nuclear Physics B, 2004, 680, 415-449.	2.5	109
12	Excitations of D-strings, entropy and duality. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 375, 103-110.	4.1	91
13	What is the gravity dual of a chiral primary?. Nuclear Physics B, 2003, 655, 185-217.	2.5	91
14	Interactions involving D-branes. Nuclear Physics B, 1996, 482, 153-172.	2.5	81
15	Radiation from the non-extremal fuzzball. Classical and Quantum Gravity, 2008, 25, 135005.	4.0	81
16	Geometry of D1–D5–P bound states. Nuclear Physics B, 2005, 729, 203-220.	2.5	77
17	Comments on black holes I: the possibility of complementarity. Journal of High Energy Physics, 2014, 2014, 1.	4.7	75
18	D1-D5-P microstates at the cap. Journal of High Energy Physics, 2013, 2013, 1.	4.7	67

#	Article	IF	CITATIONS
19	Deforming the D1D5 CFT away from the orbifold point. Journal of High Energy Physics, 2010, 2010, 1.	4.7	59
20	Adding momentum to supersymmetric geometries. Nuclear Physics B, 2013, 868, 383-415.	2.5	53
21	Excitations in the deformed D1D5 CFT. Journal of High Energy Physics, 2010, 2010, 1.	4.7	49
22	Black holes and beyond. Annals of Physics, 2012, 327, 2760-2793.	2.8	49
23	Rotating deformations of AdS3×S3, the orbifold CFT and strings in the pp-wave limit. Nuclear Physics B, 2002, 642, 91-113.	2.5	48
24	Emission from the D1D5 CFT. Journal of High Energy Physics, 2009, 2009, 065-065.	4.7	46
25	Tunneling into fuzzball states. General Relativity and Gravitation, 2010, 42, 113-118.	2.0	44
26	Can we observe fuzzballs or firewalls?. Journal of High Energy Physics, 2018, 2018, 1.	4.7	44
27	The slowly rotating near extremal D1–D5 system as a â€~hot tube'. Nuclear Physics B, 2001, 615, 285-312.	2.5	43
28	Microstates at the boundary of AdS. Journal of High Energy Physics, 2012, 2012, 1.	4.7	42
29	The flaw in the firewall argument. Nuclear Physics B, 2014, 884, 566-611.	2.5	42
30	Non-extremal fuzzballs and ergoregion emission. Classical and Quantum Gravity, 2009, 26, 035006.	4.0	41
31	Correlations in Hawking radiation and the infall problem. Journal of High Energy Physics, 2011, 2011, 1.	4.7	40
32	Effect of the deformation operator in the D1D5 CFT. Journal of High Energy Physics, 2015, 2015, 1.	4.7	39
33	The Quantum Physics of Black Holes: Results from String Theory. Annual Review of Nuclear and Particle Science, 2000, 50, 153-206.	10.2	38
34	Pair creation in non-extremal fuzzball geometries. Classical and Quantum Gravity, 2008, 25, 225021.	4.0	38
35	Emission rates, the correspondence principle and the information paradox. Nuclear Physics B, 1998, 529, 295-320.	2.5	37
36	The information paradox and the infall problem. Classical and Quantum Gravity, 2011, 28, 125010.	4.0	36

#	Article	IF	CITATIONS
37	Momentum-carrying waves on D1–D5 microstate geometries. Nuclear Physics B, 2012, 862, 764-780.	2.5	32
38	Effect of the twist operator in the D1D5 CFT. Journal of High Energy Physics, 2014, 2014, 1.	4.7	32
39	EXTREMAL CORRELATORS IN THE ADS/CFT CORRESPONDENCE. , 2000, , 332-360.		30
40	Bogoliubov coefficients for the twist operator in the D1D5 CFT. Nuclear Physics B, 2014, 889, 443-485.	2.5	29
41	HOW FAST CAN A BLACK HOLE RELEASE ITS INFORMATION?. International Journal of Modern Physics D, 2009, 18, 2215-2219.	2.1	28
42	Lifting of D1-D5-P states. Journal of High Energy Physics, 2019, 2019, 1.	4.7	26
43	Folds, bosonization and non-triviality of the classical limit of 2D string theory. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 365, 79-86.	4.1	24
44	Oscillating supertubes and neutral rotating black hole microstates. Journal of High Energy Physics, 2014, 2014, 1.	4.7	24
45	Fuzzball geometries and higher derivative corrections for extremal holes. Nuclear Physics B, 2006, 738, 48-75.	2.5	23
46	The information paradox: Conflicts and resolutions. Pramana - Journal of Physics, 2012, 79, 1059-1073.	1.8	23
47	Full action of two deformation operators in the D1D5 CFT. Journal of High Energy Physics, 2017, 2017, 1.	4.7	21
48	A PROPOSAL TO RESOLVE THE BLACK HOLE INFORMATION PARADOX. International Journal of Modern Physics D, 2002, 11, 1537-1540.	2.1	20
49	One-loop transition amplitudes in the D1D5 CFT. Journal of High Energy Physics, 2017, 2017, 1.	4.7	16
50	Lifting of level-1 states in the D1D5 CFT. Journal of High Energy Physics, 2020, 2020, 1.	4.7	16
51	Lifting at higher levels in the D1D5 CFT. Journal of High Energy Physics, 2020, 2020, 1.	4.7	16
52	A microstate for the 3-charge black ring. Nuclear Physics B, 2007, 763, 60-90.	2.5	15
53	Analyzing the squeezed state generated by a twist deformation. Physical Review D, 2015, 91, .	4.7	15
54	Lifting of states in 2-dimensional N = 4 supersymmetric CFTs. Journal of High Energy Physics, 2019, 2019, 1.	4.7	15

#	Article	IF	CITATIONS
55	Nature abhors a horizon. International Journal of Modern Physics D, 2015, 24, 1543003.	2.1	14
56	The fuzzball nature of two-charge black hole microstates. Nuclear Physics B, 2019, 945, 114684.	2.5	12
57	Black holes and holography. Journal of Physics: Conference Series, 2012, 405, 012005.	0.4	11
58	RESOLVING THE BLACK HOLE INFORMATION PARADOX. International Journal of Modern Physics A, 2000, 15, 4877-4882.	1.5	10
59	HOW DOES THE UNIVERSE EXPAND?. International Journal of Modern Physics D, 2003, 12, 1681-1685.	2.1	10
60	Membrane paradigm realized?. General Relativity and Gravitation, 2010, 42, 2331-2336.	2.0	10
61	Resolving the black hole causality paradox. General Relativity and Gravitation, 2019, 51, 1.	2.0	9
62	A toy black hole S-matrix in the D1-D5 CFT. Journal of High Energy Physics, 2013, 2013, 1.	4.7	8
63	An equation of state in the limit of high densities. Physical Review D, 2014, 90, .	4.7	8
64	Thermalization in the D1D5 CFT. Journal of High Energy Physics, 2020, 2020, 1.	4.7	8
65	What prevents gravitational collapse in string theory?. International Journal of Modern Physics D, 2016, 25, 1644018.	2.1	7
66	The vecro hypothesis. International Journal of Modern Physics D, 2020, 29, 2030009.	2.1	7
67	WHAT HAPPENS AT THE HORIZON?. International Journal of Modern Physics D, 2013, 22, 1341016.	2.1	6
68	Three puzzles in cosmology. International Journal of Modern Physics D, 2020, 29, 2030013.	2.1	6
69	CORRELATION FUNCTIONS FOR MN/SN ORBIFOLDS. International Journal of Modern Physics A, 2001, 16, 967-969.	1.5	5
70	Second order effect of twist deformations in the D1D5 CFT. Journal of High Energy Physics, 2016, 2016, 1-51.	4.7	4
71	WHAT CAN THE INFORMATION PARADOX TELL US ABOUT THE EARLY UNIVERSE?. International Journal of Modern Physics D, 2012, 21, 1241002.	2.1	3
72	Spacetime has a "thickness― International Journal of Modern Physics D, 2017, 26, 1742002.	2.1	3

#	Article	IF	CITATIONS
73	WHERE ARE THE STATES OF A BLACK HOLE?. , 2004, , .		3
74	MEMBRANE PARADIGM REALIZED?. International Journal of Modern Physics D, 2010, 19, 2423-2428.	2.1	2
75	Remnants, fuzzballs or wormholes?. International Journal of Modern Physics D, 2014, 23, 1442024.	2.1	2
76	The nature of the gravitational vacuum. International Journal of Modern Physics D, 2019, 28, 1944005.	2.1	2
77	FALLING INTO A BLACK HOLE. International Journal of Modern Physics D, 2008, 17, 583-589.	2.1	1
78	Unwinding of strings thrown into a fuzzball. Journal of High Energy Physics, 2010, 2010, 1.	4.7	1
79	Can the universe be described by a wave function?. International Journal of Modern Physics D, 2018, 27, 1847004.	2.1	1
80	The elastic vacuum. International Journal of Modern Physics D, 2021, 30, .	2.1	1
81	A COMMENT ON THE BLACK HOLE INFORMATION PARADOX. International Journal of Modern Physics A, 2001, 16, 1001-1004.	1.5	Ο
82	Effective information loss outside the horizon. General Relativity and Gravitation, 2011, 43, 2561-2566.	2.0	0
83	EFFECTIVE INFORMATION LOSS OUTSIDE THE HORIZON. International Journal of Modern Physics D, 2011, 20, 2881-2886.	2.1	Ο
84	Is entropy really proportional to area?. , 2017, , .		0
85	What are fuzzballs, and do they have to behave as firewalls?. , 2017, , .		0