Xinhua Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6257713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combinations of V ₂ C and Ti ₃ C ₂ MXenes for Boosting the Hydrogen Storage Performances of MgH ₂ . ACS Applied Materials & Interfaces, 2021, 13, 13235-13247.	8.0	111
2	High-Yield Two-Dimensional Metal–Organic Framework Derivatives for Wideband Electromagnetic Wave Absorption. ACS Applied Materials & Interfaces, 2021, 13, 20459-20466.	8.0	55
3	CNTs decorated with CoFeB as a dopant to remarkably improve the dehydrogenation/rehydrogenation performance and cyclic stability of MgH2. International Journal of Hydrogen Energy, 2020, 45, 28964-28973.	7.1	26
4	MoSe2 hollow nanospheres decorated with FeNi3 nanoparticles for enhancing the hydrogen storage properties of MgH2. Journal of Alloys and Compounds, 2020, 830, 154631.	5.5	21
5	Effects of nano-composites (FeB, FeB/CNTs) on hydrogen storage properties of MgH2. Journal of Power Sources, 2019, 438, 227006.	7.8	57
6	The Dehydrogenation Mechanism and Cycling Property of MgH 2 ÂModified by CoB/CNTs Addition. ChemistrySelect, 2019, 4, 9934-9939.	1.5	4
7	Wet Chemical Synthesis of Non-solvated Rod-Like α'-AlH3 as a Hydrogen Storage Material. Frontiers in Chemistry, 2019, 7, 892.	3.6	11
8	Hydrogen storage properties of nano-CoB/CNTs catalyzed MgH2. Journal of Alloys and Compounds, 2018, 735, 635-642.	5.5	45
9	Improved hydrogen desorption properties of LiBH4 by AlH3 addition. International Journal of Hydrogen Energy, 2016, 41, 22118-22127.	7.1	48
10	Synergistically thermodynamic and kinetic tailoring of the hydrogen desorption properties of MgH ₂ by co-addition of AlH ₃ and CeF ₃ . RSC Advances, 2015, 5, 22091-22096.	3.6	41
11	Study on hydrogen generation from the hydrolysis of a ball milled aluminum/calcium hydride composite. RSC Advances, 2015, 5, 60460-60466.	3.6	20
12	Effect of salts addition on the hydrogen generation of Al–LiH composite elaborated by ball milling. Energy, 2015, 89, 907-913.	8.8	35
13	Hydrogen generation from Mg–LiBH4 hydrolysis improved by AlCl3 addition. Energy, 2014, 68, 548-554.	8.8	43
14	Hydrogen Desorption Properties of the MgH ₂ –AlH ₃ Composites. Journal of Physical Chemistry C, 2014, 118, 37-45.	3.1	74
15	In situ synthesis of SnO ₂ nanoparticles encapsulated in micro/mesoporous carbon foam as a high-performance anode material for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 18367-18374.	10.3	64
16	Carbon encapsulated 3D hierarchical Fe3O4 spheres as advanced anode materials with long cycle lifetimes for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 14641-14648.	10.3	62
17	Microstructures and Hydrogen Desorption Properties of the MgH ₂ –AlH ₃ Composite with NbF ₅ Addition. Journal of Physical Chemistry C, 2014, 118, 18908-18916.	3.1	30
18	Improved hydrogen storage properties of MgH2 by ball milling with AlH3: preparations, de/rehydriding properties, and reaction mechanisms. Journal of Materials Chemistry A, 2013, 1, 12527.	10.3	70

Xinhua Wang

#	Article	IF	CITATIONS
19	High catalytic efficiency of amorphous TiB2 and NbB2 nanoparticles for hydrogen storage using the 2LiBH4–MgH2 system. Journal of Materials Chemistry A, 2013, 1, 11368.	10.3	47
20	Hydrogen storage properties of LiBH4–Li3AlH6 composites. Journal of Alloys and Compounds, 2012, 517, 127-131.	5.5	27
21	Direct preparation of LiBH4 from pre-treated LiH+B mixture at high pressure. Journal of Alloys and Compounds, 2011, 509, 3481-3485.	5.5	15
22	Hydrogen absorption/desorption properties of Li–Al–N–H composite. Materials Chemistry and Physics, 2011, 126, 989-992.	4.0	3
23	An investigation on the reaction mechanism of LiAlH4–MgH2 hydrogen storage system. Materials Chemistry and Physics, 2010, 124, 83-87.	4.0	53
24	Investigation on reversible hydrogen storage properties of Li3AlH6/2LiNH2 composite. Journal of Alloys and Compounds, 2010, 494, 58-61.	5.5	12
25	An investigation on the reaction pathway between LiAlH4 and LiNH2 via gaseous ammonia. Journal of Alloys and Compounds, 2010, 495, 17-22.	5.5	6
26	Effects of ball-milling time and Bi2O3 addition on electrochemical performance of ball-milled La2Mg17+200wt.% Ni composites. Journal of Alloys and Compounds, 2006, 416, 194-198.	5.5	15
27	Hydrogen storage alloys for high-pressure suprapure hydrogen compressor. Journal of Alloys and Compounds, 2006, 420, 322-325.	5.5	53
28	Study of local stress using stress-absorbing Si diaphragm. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 2178.	1.6	3