
Herbert Strobl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6257508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BMPR1a Is Required for the Optimal TGFβ1-Dependent CD207+ Langerhans Cell Differentiation and Limits Skin Inflammation through CD11c+ Cells. Journal of Investigative Dermatology, 2022, 142, 2446-2454.e3.	0.7	3
2	Immunomodulatory Effects of Aronia Juice Polyphenols—Results of a Randomized Placebo-Controlled Human Intervention Study and Cell Culture Experiments. Antioxidants, 2022, 11, 1283.	5.1	4
3	Bone morphogenetic protein signaling regulates skin inflammation via modulating dendritic cell function. Journal of Allergy and Clinical Immunology, 2021, 147, 1810-1822.e9.	2.9	14
4	Micro-RNA-125a mediates the effects of hypomethylating agents in chronic myelomonocytic leukemia. Clinical Epigenetics, 2021, 13, 1.	4.1	57
5	Psoriatic skin inflammation is promoted by câ€Jun/APâ€1â€dependent CCL2 and ILâ€23 expression in dendritic cells. EMBO Molecular Medicine, 2021, 13, e12409.	6.9	42
6	Induction of the sphingosineâ€1â€phosphate signaling pathway by TGFâ€Î²1 during Langerhansâ€ŧype dendritic cell differentiation. European Journal of Immunology, 2021, 51, 1854-1856.	2.9	3
7	The miR-424(322)/503 gene cluster regulates pro- versus anti-inflammatory skin DC subset differentiation by modulating TGF-1² signaling. Cell Reports, 2021, 35, 109049.	6.4	4
8	Loss of RAF kinase inhibitor protein is involved in myelomonocytic differentiation and aggravates RAS-driven myeloid leukemogenesis. Haematologica, 2020, 105, 375-386.	3.5	11
9	BMP7 aberrantly induced in the psoriatic epidermis instructs inflammation-associated Langerhans cells. Journal of Allergy and Clinical Immunology, 2020, 145, 1194-1207.e11.	2.9	12
10	TNFα Rescues Dendritic Cell Development in Hematopoietic Stem and Progenitor Cells Lacking C/EBPα. Cells, 2020, 9, 1223.	4.1	3
11	miR-181a Modulation of ERK-MAPK Signaling Sustains DC-SIGN Expression and Limits Activation of Monocyte-Derived Dendritic Cells. Cell Reports, 2020, 30, 3793-3805.e5.	6.4	14
12	Micro-environmental signals directing human epidermal Langerhans cell differentiation. Seminars in Cell and Developmental Biology, 2019, 86, 36-43.	5.0	25
13	Loss of RKIP is a frequent event in myeloid sarcoma and promotes leukemic tissue infiltration. Blood, 2018, 131, 826-830.	1.4	10
14	Human skin dendritic cell fate is differentially regulated by the monocyte identity factor Kruppel-like factor 4 during steady state and inflammation. Journal of Allergy and Clinical Immunology, 2017, 139, 1873-1884.e10.	2.9	20
15	GM-CSF Monocyte-Derived Cells and Langerhans Cells As Part of the Dendritic Cell Family. Frontiers in Immunology, 2017, 8, 1388.	4.8	66
16	Engagement of distinct epitopes on CD 43 induces different coâ€stimulatory pathways in human T cells. Immunology, 2016, 149, 280-296.	4.4	7
17	Monocytic cell differentiation from band-stage neutrophils under inflammatory conditions via MKK6 activation. Blood, 2014, 124, 2713-2724.	1.4	40
18	Langerhans cell maturation is accompanied by induction of N adherin and the transcriptional regulators of epithelial–mesenchymal transition ZEB1/2. European Journal of Immunology, 2014, 44, 553-560.	2.9	44

HERBERT STROBL

#	Article	IF	CITATIONS
19	Inflammatory Langerhans cell differentiation. Blood, 2014, 124, 2319-2320.	1.4	1
20	β-Catenin Promotes the Differentiation of Epidermal Langerhans Dendritic Cells. Journal of Investigative Dermatology, 2013, 133, 1250-1259.	0.7	31
21	Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. Journal of Experimental Medicine, 2013, 210, 2597-2610.	8.5	88
22	Identification of Axl as a downstream effector of TGF-β1 during Langerhans cell differentiation and epidermal homeostasis. Journal of Experimental Medicine, 2012, 209, 2033-2047.	8.5	104
23	Identification of TROP2 (TACSTD2), an EpCAM-Like Molecule, as a Specific Marker for TGF-β1-Dependent Human Epidermal Langerhans Cells. Journal of Investigative Dermatology, 2011, 131, 2049-2057.	0.7	35
24	miR-146a Is Differentially Expressed by Myeloid Dendritic Cell Subsets and Desensitizes Cells to TLR2-Dependent Activation. Journal of Immunology, 2010, 184, 4955-4965.	0.8	138
25	Aryl Hydrocarbon Receptor Activation Inhibits In Vitro Differentiation of Human Monocytes and Langerhans Dendritic Cells. Journal of Immunology, 2009, 183, 66-74.	0.8	94
26	Reciprocal role of GATA-1 and vitamin D receptor in human myeloid dendritic cell differentiation. Blood, 2009, 114, 3813-3821.	1.4	35
27	Down-regulation of RXRα expression is essential for neutrophil development from granulocyte/monocyte progenitors. Blood, 2007, 109, 971-979.	1.4	53
28	Human Langerhans-cell activation triggered in vitro by conditionally expressed MKK6 is counterregulated by the downstream effector RelB. Blood, 2007, 109, 185-193.	1.4	28
29	GATA-1 Interferes with Monopoiesis by Blocking a Positive Regulatory Circuit Involving VDR and PU.1 - Results from a Retroviral Dominant Effector Screen Blood, 2007, 110, 1229-1229.	1.4	0
30	GATA-1 Is Functionally Involved in the Human CD11b+ Interstitial/Dermal Dendritic Cell Pathway Blood, 2007, 110, 4072-4072.	1.4	0
31	Differential involvement of PU.1 and Id2 downstream of TGF-β1 during Langerhans-cell commitment. Blood, 2006, 107, 1445-1453.	1.4	61
32	RelB regulates human dendritic cell subset development by promoting monocyte intermediates. Blood, 2004, 104, 3655-3663.	1.4	58
33	Ligation of E-cadherin on in vitro–generated immature Langerhans-type dendritic cells inhibits their maturation. Blood, 2000, 96, 4276-4284.	1.4	100
34	Functional Involvement of E-Cadherin in TGF-β1-Induced Cell Cluster Formation of In Vitro Developing Human Langerhans-Type Dendritic Cells. Journal of Immunology, 2000, 165, 1381-1386.	0.8	64
35	flt3 Ligand in Cooperation With Transforming Growth Factor-β1 Potentiates In Vitro Development of Langerhans-Type Dendritic Cells and Allows Single-Cell Dendritic Cell Cluster Formation Under Serum-Free Conditions. Blood, 1997, 90, 1425-1434.	1.4	188
36	flt3 Ligand in Cooperation With Transforming Growth Factor-β1 Potentiates In Vitro Development of Langerhans-Type Dendritic Cells and Allows Single-Cell Dendritic Cell Cluster Formation Under Serum-Free Conditions. Blood, 1997, 90, 1425-1434.	1.4	22