
Maximilian Kleinert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6257204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GDF15 in Appetite and Exercise: Essential Player or Coincidental Bystander?. Endocrinology, 2022, 163, .	1.4	26
2	Genes controlling skeletal muscle glucose uptake and their regulation by endurance and resistance exercise. Journal of Cellular Biochemistry, 2022, 123, 202-214.	1.2	7
3	InÂvivo metabolic effects after acute activation of skeletal muscle Gs signaling. Molecular Metabolism, 2022, 55, 101415.	3.0	5
4	Clenbuterol exerts antidiabetic activity through metabolic reprogramming of skeletal muscle cells. Nature Communications, 2022, 13, 22.	5.8	15
5	Exercise increases phosphorylation of the putative mTORC2 activity readout NDRG1 in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E63-E73.	1.8	4
6	Plasma proteome profiles treatment efficacy of incretin dual agonism in dietâ€induced obese female and male mice. Diabetes, Obesity and Metabolism, 2021, 23, 195-207.	2.2	12
7	Small Amounts of Dietary Medium-Chain Fatty Acids Protect Against Insulin Resistance During Caloric Excess in Humans. Diabetes, 2021, 70, 91-98.	0.3	18
8	Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise. Nature Communications, 2021, 12, 1041.	5.8	69
9	Glucagon's Metabolic Action in Health and Disease. , 2021, 11, 1759-1783.		21
10	The Role of GDF15 as a Myomitokine. Cells, 2021, 10, 2990.	1.8	52
11	Growth Factor-Dependent and -Independent Activation of mTORC2. Trends in Endocrinology and Metabolism, 2020, 31, 13-24.	3.1	31
12	Glucometabolic consequences of acute and prolonged inhibition of fatty acid oxidation. Journal of Lipid Research, 2020, 61, 10-19.	2.0	23
13	A New FGF21 Analog for the Treatment of Fatty Liver Disease. Diabetes, 2020, 69, 1605-1607.	0.3	8
14	Pharmacological targeting of α3β4 nicotinic receptors improves peripheral insulin sensitivity in mice with diet-induced obesity. Diabetologia, 2020, 63, 1236-1247.	2.9	9
15	Targeted pharmacological therapy restores Î ² -cell function for diabetes remission. Nature Metabolism, 2020, 2, 192-209.	5.1	93
16	ApoA-1 improves glucose tolerance by increasing glucose uptake into heart and skeletal muscle independently of AMPKα2. Molecular Metabolism, 2020, 35, 100949.	3.0	25
17	Glucagon Regulation of Energy Expenditure. International Journal of Molecular Sciences, 2019, 20, 5407.	1.8	70
18	Effect of bariatric surgery on plasma GDF15 in humans. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E615-E621.	1.8	25

MAXIMILIAN KLEINERT

#	Article	IF	CITATIONS
19	Teaching an old dog new tricks: metformin induces body-weight loss via GDF15. Nature Metabolism, 2019, 1, 1171-1172.	5.1	2
20	Exercise increases circulating GDF15 in humans. Molecular Metabolism, 2018, 9, 187-191.	3.0	109
21	Animal models of obesity and diabetes mellitus. Nature Reviews Endocrinology, 2018, 14, 140-162.	4.3	563
22	Coordinated targeting of cold and nicotinic receptors synergistically improves obesity and type 2 diabetes. Nature Communications, 2018, 9, 4304.	5.8	41
23	Periodized low protein-high carbohydrate diet confers potent, but transient, metabolic improvements. Molecular Metabolism, 2018, 17, 112-121.	3.0	15
24	Quantitative proteomic characterization of cellular pathways associated with altered insulin sensitivity in skeletal muscle following high-fat diet feeding and exercise training. Scientific Reports, 2018, 8, 10723.	1.6	44
25	Time-resolved hypothalamic open flow micro-perfusion reveals normal leptin transport across the blood–brain barrier in leptin resistant mice. Molecular Metabolism, 2018, 13, 77-82.	3.0	25
26	Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biology, 2018, 16, e2005886.	2.6	107
27	Chronic Beta2â€Adrenergic Receptor Stimulation Improves Wholeâ€Body Glucose Homeostasis through Skeletal Muscle Metabolic Reprogramming. FASEB Journal, 2018, 32, 533.43.	0.2	0
28	Rac1 and AMPK Account for the Majority of Muscle Glucose Uptake Stimulated by Ex Vivo Contraction but Not In Vivo Exercise. Diabetes, 2017, 66, 1548-1559.	0.3	48
29	Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice. Journal of Physiology, 2017, 595, 4845-4855.	1.3	43
30	Exercise Increases Human Skeletal Muscle Insulin Sensitivity via Coordinated Increases in Microvascular Perfusion and Molecular Signaling. Diabetes, 2017, 66, 1501-1510.	0.3	120
31	Exercise-stimulated glucose uptake — regulation and implications for glycaemic control. Nature Reviews Endocrinology, 2017, 13, 133-148.	4.3	312
32	Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation. Journal of Physiology, 2016, 594, 745-761.	1.3	78
33	Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell, 2016, 167, 843-857.e14.	13.5	153
34	mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3. Molecular Metabolism, 2016, 5, 646-655.	3.0	44
35	Rac1 governs exerciseâ€stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. Journal of Physiology, 2016, 594, 4997-5008.	1.3	87
36	Reply from Lykke Sylow, Lisbeth L. V. MÃ,ller, Maximilian Kleinert, Erik A. Richter and Thomas E. Jensen. Journal of Physiology, 2015, 593, 2239-2240.	1.3	0

MAXIMILIAN KLEINERT

#	Article	IF	CITATIONS
37	PT-1 selectively activates AMPK-γ1 complexes in mouse skeletal muscle, but activates all three γ subunit complexes in cultured human cells by inhibiting the respiratory chain. Biochemical Journal, 2015, 467, 461-472.	1.7	47
38	The RabGAP TBC1D1 Plays a Central Role in Exercise-Regulated Glucose Metabolism in Skeletal Muscle. Diabetes, 2015, 64, 1914-1922.	0.3	62
39	Leukemia inhibitory factor increases glucose uptake in mouse skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E142-E153.	1.8	28
40	Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates. Cell Metabolism, 2015, 22, 922-935.	7.2	333
41	Stretchâ€stimulated glucose transport in skeletal muscle is regulated by Rac1. Journal of Physiology, 2015, 593, 645-656.	1.3	58
42	Rac1 – a novel regulator of contractionâ€stimulated glucose uptake in skeletal muscle. Experimental Physiology, 2014, 99, 1574-1580.	0.9	58
43	Acute mTOR inhibition induces insulin resistance and alters substrate utilization inÂvivo. Molecular Metabolism, 2014, 3, 630-641.	3.0	68
44	Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cellular Signalling, 2014, 26, 323-331.	1.7	117
45	Leukemia inhibitory factor stimulates muscle glucose uptake by a PI3â€kinase dependent pathway that is maintained in white muscle in obesity (1162.4). FASEB Journal, 2014, 28, 1162.4.	0.2	0
46	Rac1 Is a Novel Regulator of Contraction-Stimulated Glucose Uptake in Skeletal Muscle. Diabetes, 2013, 62, 1139-1151.	0.3	126
47	Regulation of glycogen synthase in muscle and its role in Type 2 diabetes. Diabetes Management, 2013, 3, 81-90.	0.5	8
48	Rac1 Signaling Is Required for Insulin-Stimulated Glucose Uptake and Is Dysregulated in Insulin-Resistant Murine and Human Skeletal Muscle. Diabetes, 2013, 62, 1865-1875.	0.3	159
49	Muscleâ€specific deletion of mTORC2 (Rictor) blocks insulin stimulated Akt Ser 473 phosphorylation and impairs submaximal but not maximal insulin induced glucose uptake. FASEB Journal, 2013, 27, 1109.10.	0.2	0
50	Rac1 is a novel regulator of stretchâ€induced glucose uptake in muscle. FASEB Journal, 2013, 27, 1152.7.	0.2	0