
Jason Munshi-South

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6256031/publications.pdf Version: 2024-02-01

Т

#	Article	IF	CITATIONS
1	Effects of Research and Mentoring on Underrepresented Youths' STEM Persistence Into College. Journal of Experiential Education, 2022, 45, 316-336.	0.6	6
2	Global urban environmental change drives adaptation in white clover. Science, 2022, 375, 1275-1281.	6.0	62
3	A Theory of City Biogeography and the Origin of Urban Species. Frontiers in Conservation Science, 2022, 3, .	0.9	7
4	Impacts of a Near-Peer Urban Ecology Research Mentoring Program on Undergraduate Mentors. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	0
5	Widespread genetic connectivity of feral pigeons across the Northeastern megacity. Evolutionary Applications, 2021, 14, 150-162.	1.5	25
6	Urbanization reduces gene flow but not genetic diversity of stream salamander populations in the New York City metropolitan area. Evolutionary Applications, 2021, 14, 99-116.	1.5	21
7	Socioâ€ecoâ€evolutionary dynamics in cities. Evolutionary Applications, 2021, 14, 248-267.	1.5	86
8	Using genetic relatedness to understand heterogeneous distributions of urban ratâ€associated pathogens. Evolutionary Applications, 2021, 14, 198-209.	1.5	11
9	Genetic Adaptation in New York City Rats. Genome Biology and Evolution, 2021, 13, .	1.1	13
10	Global origins of invasive brown rats (Rattus norvegicus) in the Haida Gwaii archipelago. Biological Invasions, 2021, 23, 611-623.	1.2	5
11	Dispersal ability predicts spatial genetic structure in native mammals persisting across an urbanization gradient. Evolutionary Applications, 2021, 14, 163-177.	1.5	14
12	Urban Landscape Genetics: Are Biologists Keeping Up with the Pace of Urbanization?. Current Landscape Ecology Reports, 2021, 6, 35-45.	1.1	16
13	Exome sequencing of deer mice on two California Channel Islands identifies potential adaptation to strongly contrasting ecological conditions. Ecology and Evolution, 2021, 11, 17191-17201.	0.8	0
14	Genomic analyses reveal three independent introductions of the invasive brown rat (Rattus) Tj ETQq0 0 0 rgBT /C	Overlock 10 1.2	0 Tf 50 222 ⁻ 12
15	Genetic diversity and relatedness of a recently established population of eastern coyotes (Canis) Tj ETQq1 1 0.78	94314 rgB ⁻	[/gverlock]
16	The Complexity of Urban Eco-evolutionary Dynamics. BioScience, 2020, 70, 772-793.	2.2	79
17	Commensal Rats and Humans: Integrating Rodent Phylogeography and Zooarchaeology to Highlight Connections between Human Societies. BioEssays, 2020, 42, e1900160.	1.2	26

Variation in brown rat cranial shape shows directional selection over 120Âyears in New York City. Ecology and Evolution, 2020, 10, 4739-4748. 18 0.8 13

#	Article	IF	CITATIONS
19	Adaptation Genomics in Urban Environments. , 2020, , 74-90.		9
20	Gene flow and genetic drift in urban environments. Molecular Ecology, 2019, 28, 4138-4151.	2.0	131
21	Differential responses by urban brown rats (Rattus norvegicus) toward male or female-produced scents in sheltered and high-risk presentations. Journal of Urban Ecology, 2019, 5, .	0.6	8
22	Genetics of urban colonization: neutral and adaptive variation in coyotes (<i>Canis latrans</i>) inhabiting the New York metropolitan area. Journal of Urban Ecology, 2019, 5, .	0.6	14
23	Brown rat demography reveals pre-commensal structure in eastern Asia before expansion into Southeast Asia. Genome Research, 2019, 29, 762-770.	2.4	24
24	A roadmap for urban evolutionary ecology. Evolutionary Applications, 2019, 12, 384-398.	1.5	161
25	Genomic analyses identify multiple Asian origins and deeply diverged mitochondrial clades in inbred brown rats (Rattus norvegicus). Evolutionary Applications, 2018, 11, 718-726.	1.5	12
26	Spatial population genomics of the brown rat (<i>Rattus norvegicus</i>) in New York City. Molecular Ecology, 2018, 27, 83-98.	2.0	81
27	Pre-college urban ecology research mentoring: promoting broader participation in the field of ecology for an urban future. Journal of Urban Ecology, 2018, 4, .	0.6	5
28	Temporal and Space-Use Changes by Rats in Response to Predation by Feral Cats in an Urban Ecosystem. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	37
29	Urban rat races: spatial population genomics of brown rats (<i>Rattus norvegicus</i>) compared across multiple cities. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180245.	1.2	48
30	Morphological Differentiation in White-Footed Mouse (Mammalia: Rodentia: Cricetidae: Peromyscus) Tj ETQq0 0 Natural History, 2017, 58, 3.	0 rgBT /C 0.6	verlock 10 Tf 11
31	Genomewide <scp>SNP</scp> data reveal cryptic phylogeographic structure and microallopatric divergence in a rapidsâ€adapted clade of cichlids from the Congo River. Molecular Ecology, 2017, 26, 1401-1419.	2.0	38
32	Evolution of life in urban environments. Science, 2017, 358, .	6.0	609
33	Signatures of positive selection and local adaptation to urbanization in whiteâ€footed mice (<i>Peromyscus leucopus</i>). Molecular Ecology, 2017, 26, 6336-6350.	2.0	61
34	Peromyscus transcriptomics: Understanding adaptation and gene expression plasticity within and between species of deer mice. Seminars in Cell and Developmental Biology, 2017, 61, 131-139.	2.3	11
35	Trends in urban rat ecology: a framework to define the prevailing knowledge gaps and incentives for academia, pest management professionals (PMPs) and public health agencies to participate. Journal of Urban Ecology, 2017, 3, .	0.6	52
36	Interferon signaling in Peromyscus leucopus confers a potent and specific restriction to vector-borne flaviviruses. PLoS ONE, 2017, 12, e0179781.	1.1	12

#	Article	IF	CITATIONS
37	Urban forests sustain diverse carrion beetle assemblages in the New York City metropolitan area. PeerJ, 2017, 5, e3088.	0.9	8
38	Urbanization shapes the demographic history of a native rodent (the white-footed mouse,) Tj ETQq0 0 0 rgBT /O	verlock 10	Tf 50 702 To 24
39	Population genomics of the Anthropocene: urbanization is negatively associated with genomeâ€wide variation in whiteâ€footed mouse populations. Evolutionary Applications, 2016, 9, 546-564.	1.5	95
40	Global population divergence and admixture of the brown rat (<i>Rattus norvegicus</i>). Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161762.	1.2	119

41	Evolution of the indoor biome. Trends in Ecology and Evolution, 2015, 30, 223-232.	4.2	75
42	Transcriptome resources for the whiteâ€footed mouse (<i>Peromyscus leucopus</i>): new genomic tools for investigating ecologically divergent urban and rural populations. Molecular Ecology Resources, 2015, 15, 382-394.	2.2	52
43	Urban ecology: advancing science and society. Frontiers in Ecology and the Environment, 2014, 12, 574-581.	1.9	60
44	Go forth, evolve and prosper: the genetic basis of adaptive evolution in an invasive species. Molecular Ecology, 2014, 23, 2137-2140.	2.0	20
45	Urban park characteristics, genetic variation, and historical demography of white-footed mouse (<i>Peromyscus leucopus</i>) populations in New York City. PeerJ, 2014, 2, e310.	0.9	26

 $_{46}$ Signatures of Rapid Evolution in Urban and Rural Transcriptomes of White-Footed Mice (Peromyscus) Tj ETQq0 0 0 $_{1.1}^{0.1}$ $_{68}^{0.1}$ BT /Overlock 10 Tf

47	Conservation genetics of extremely isolated urban populations of the northern dusky salamander (<i>Desmognathus fuscus</i>) in New York City. PeerJ, 2013, 1, e64.	0.9	33
48	Urban landscape genetics: canopy cover predicts gene flow between whiteâ€footed mouse (<i>Peromyscus leucopus</i>) populations in New York City. Molecular Ecology, 2012, 21, 1360-1378.	2.0	125
49	Relatedness and Demography of African Forest Elephants: Inferences from Noninvasive Fecal DNA Analyses. Journal of Heredity, 2011, 102, 391-398.	1.0	16
50	Genetic Diversity and Distinctiveness of the Proboscis Monkeys (Nasalis larvatus) of the Klias Peninsula, Sabah, Malaysia. Journal of Heredity, 2011, 102, 342-346.	1.0	12
51	Rapid, pervasive genetic differentiation of urban white-footed mouse (Peromyscus leucopus) populations in New York City. Molecular Ecology, 2010, 19, 4242-4254.	2.0	90
52	Bats and birds: Exceptional longevity despite high metabolic rates. Ageing Research Reviews, 2010, 9, 12-19.	5.0	174
53	Physiological indicators of stress in African forest elephants (<i>Loxodonta africana cyclotis</i>) in relation to petroleum operations in Gabon, Central Africa. Diversity and Distributions, 2008, 14, 995-1003.	1.9	45
54	Colugo: The Flying Lemur of South-East Asia. Journal of Mammalogy, 2008, 89, 518-518.	0.6	1

#	Article	IF	CITATIONS
55	Female-Biased Dispersal and Gene Flow in a Behaviorally Monogamous Mammal, the Large Treeshrew (Tupaia tana). PLoS ONE, 2008, 3, e3228.	1.1	11
56	Behavioral Monogamy and Fruit Aavailability in the Large Treeshrew (Tupaia tana) in Sabah, Malaysia. Journal of Mammalogy, 2007, 88, 1427-1438.	0.6	15
57	Extra-pair paternity and the evolution of testis size in a behaviorally monogamous tropical mammal, the large treeshrew (Tupaia tana). Behavioral Ecology and Sociobiology, 2007, 62, 201-212.	0.6	32
58	DIET INFLUENCES LIFE SPAN IN PARROTS (PSITTACIFORMES). Auk, 2006, 123, 108.	0.7	27
59	Diet Influences Life Span in Parrots (Psittaciformes). Auk, 2006, 123, 108-118.	0.7	35
60	Isolation and characterization of polymorphic microsatellite loci in Bornean treeshrews (Tupaia) Tj ETQq0 0 0 rg	BT /Oyerlo 1.7	ck

61	Monogamy: Mating Strategies and Partnerships in Birds, Humans and Other Mammals. Journal of Mammalogy, 2004, 85, 1030-1031.	0.6	Ο
62	Life history, ecology and longevity in bats. Aging Cell, 2002, 1, 124-131.	3.0	340