
Suzanne R Kalb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6255883/publications.pdf Version: 2024-02-01

SUZANNE R KALR

#	Article	IF	CITATIONS
1	Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins, 2017, 9, 38.	3.4	232
2	Detection of Botulinum Neurotoxin A in a Spiked Milk Sample with Subtype Identification through Toxin Proteomics. Analytical Chemistry, 2005, 77, 6140-6146.	6.5	75
3	Extraction and Inhibition of Enzymatic Activity of Botulinum Neurotoxins/A1, /A2, and /A3 by a Panel of Monoclonal Anti-BoNT/A Antibodies. PLoS ONE, 2009, 4, e5355.	2.5	59
4	Discovery of a novel enzymatic cleavage site for botulinum neurotoxin F5. FEBS Letters, 2012, 586, 109-115.	2.8	59
5	Extraction of BoNT/A, /B, /E, and /F with a Single, High Affinity Monoclonal Antibody for Detection of Botulinum Neurotoxin by Endopep-MS. PLoS ONE, 2010, 5, e12237.	2.5	53
6	De novo subtype and strain identification of botulinum neurotoxin type B through toxin proteomics. Analytical and Bioanalytical Chemistry, 2012, 403, 215-226.	3.7	46
7	Recommended Mass Spectrometry-Based Strategies to Identify Botulinum Neurotoxin-Containing Samples. Toxins, 2015, 7, 1765-1778.	3.4	38
8	Improved detection of botulinum neurotoxin type A in stool by mass spectrometry. Analytical Biochemistry, 2011, 412, 67-73.	2.4	36
9	Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples. Toxins, 2015, 7, 4881-4894.	3.4	29
10	Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity. Toxins, 2015, 7, 3497-3511.	3.4	28
11	Improved Sensitivity for the Qualitative and Quantitative Analysis of Active Ricin by MALDI-TOF Mass Spectrometry. Analytical Chemistry, 2016, 88, 6867-6872.	6.5	27
12	Extraction and inhibition of enzymatic activity of botulinum neurotoxins /B1, /B2, /B3, /B4, and /B5 by a panel of monoclonal anti-BoNT/B antibodies. BMC Biochemistry, 2011, 12, 58.	4.4	24
13	Different Substrate Recognition Requirements for Cleavage of Synaptobrevin-2 by <i>Clostridium baratii</i> and <i>Clostridium botulinum</i> Type F Neurotoxins. Applied and Environmental Microbiology, 2011, 77, 1301-1308.	3.1	22
14	Improved detection of botulinum neurotoxin serotype A by Endopep–MS through peptide substrate modification. Analytical Biochemistry, 2013, 432, 115-123.	2.4	22
15	Enhanced detection of type C botulinum neurotoxin by the Endopep-MS assay through optimization of peptide substrates. Bioorganic and Medicinal Chemistry, 2015, 23, 3667-3673.	3.0	22
16	Three Enzymatically Active Neurotoxins ofClostridium botulinumStrain Af84: BoNT/A2, /F4, and /F5. Analytical Chemistry, 2014, 86, 3254-3262.	6.5	20
17	Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins. Toxins, 2017, 9, 193.	3.4	14
18	Further optimization of peptide substrate enhanced assay performance for BoNT/A detection by MALDI-TOF mass spectrometry. Analytical and Bioanalytical Chemistry, 2017, 409, 4779-4786.	3.7	12

#	Article	IF	CITATIONS
19	Optimization of peptide substrates for botulinum neurotoxin E improves detection sensitivity in the Endopep–MS assay. Analytical Biochemistry, 2015, 468, 15-21.	2.4	8
20	Detection of ricin activity and structure by using novel galactose-terminated magnetic bead extraction coupled with mass spectrometric detection. Analytical Biochemistry, 2021, 631, 114364.	2.4	6
21	Proposed BoNT/A and /B Peptide Substrates Cannot Detect Multiple Subtypes in the Endopep-MS Assay. Journal of Analytical Toxicology, 2020, 44, 173-179.	2.8	5