
Eiji Yashima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/625581/publications.pdf Version: 2024-02-01

ΕΠΙ ΥΛΟΗΙΜΑ

#	Article	IF	CITATIONS
1	Helical Polymers: Synthesis, Structures, and Functions. Chemical Reviews, 2009, 109, 6102-6211.	23.0	1,481
2	Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chemical Reviews, 2016, 116, 13752-13990.	23.0	1,444
3	Polysaccharide Derivatives for Chromatographic Separation of Enantiomers. Angewandte Chemie - International Edition, 1998, 37, 1020-1043.	7.2	870
4	Memory of macromolecular helicity assisted by interaction with achiral small molecules. Nature, 1999, 399, 449-451.	13.7	752
5	Detection and Amplification of Chirality by Helical Polymers. Chemistry - A European Journal, 2004, 10, 42-51.	1.7	535
6	Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation. Journal of Chromatography A, 2001, 906, 105-125.	1.8	461
7	Single- and Double-Stranded Helical Polymers: Synthesis, Structures, and Functions. Accounts of Chemical Research, 2008, 41, 1166-1180.	7.6	445
8	Chirality Assignment of Amines and Amino Alcohols Based on Circular Dichroism Induced by Helix Formation of a Stereoregular Poly((4-carboxyphenyl)acetylene) through Acidâ^'Base Complexation. Journal of the American Chemical Society, 1997, 119, 6345-6359.	6.6	435
9	Chirality-Responsive Helical Polymers. Macromolecules, 2008, 41, 3-12.	2.2	417
10	Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nature Chemistry, 2014, 6, 429-434.	6.6	326
11	Pulsating Tubules from Noncovalent Macrocycles. Science, 2012, 337, 1521-1526.	6.0	298
12	Poly((4-carboxyphenyl)acetylene) as a Probe for Chirality Assignment of Amines by Circular Dichroism. Journal of the American Chemical Society, 1995, 117, 11596-11597.	6.6	256
13	Chiral Discrimination on Polysaccharides Derivatives. Bulletin of the Chemical Society of Japan, 1995, 68, 3289-3307.	2.0	249
14	Two-Dimensional Surface Chirality Control by Solvent-Induced Helicity Inversion of a Helical Polyacetylene on Graphite. Journal of the American Chemical Society, 2006, 128, 5650-5651.	6.6	248
15	Detection and Amplification of a Small Enantiomeric Imbalance in α-Amino Acids by a Helical Poly(phenylacetylene) with Crown Ether Pendants. Journal of the American Chemical Society, 2003, 125, 1278-1283.	6.6	211
16	NMR Studies of Chiral Discrimination Relevant to the Liquid Chromatographic Enantioseparation by a Cellulose Phenylcarbamate Derivative. Journal of the American Chemical Society, 1996, 118, 4036-4048.	6.6	197
17	Switching of a Macromolecular Helicity for Visual Distinction of Molecular Recognition Events. Journal of the American Chemical Society, 2001, 123, 8159-8160.	6.6	193
18	Chloromethylphenylcarbamate derivatives of cellulose as chiral stationary phases for high-performance liquid chromatography. Journal of Chromatography A, 1994, 670, 39-49.	1.8	190

#	Article	IF	CITATIONS
19	Switching of Macromolecular Helicity of Optically Active Poly(phenylacetylene)s Bearing Cyclodextrin Pendants Induced by Various External Stimuli. Journal of the American Chemical Society, 2006, 128, 7639-7650.	6.6	182
20	Supramolecular Chirality of Thermotropic Liquid-Crystalline Folic Acid Derivatives. Angewandte Chemie - International Edition, 2004, 43, 1969-1972.	7.2	181
21	Synthesis and Conformational Study of Optically Active Poly(phenylacetylene) Derivatives Bearing a Bulky Substituent. Macromolecules, 1995, 28, 4184-4193.	2.2	179
22	Structural Analysis of Amylose Tris(3,5-dimethylphenylcarbamate) by NMR Relevant to Its Chiral Recognition Mechanism in HPLC. Journal of the American Chemical Society, 2002, 124, 12583-12589.	6.6	173
23	Mechanism of Helix Induction on a Stereoregular Poly((4-carboxyphenyl)acetylene) with Chiral Amines and Memory of the Macromolecular Helicity Assisted by Interaction with Achiral Amines. Journal of the American Chemical Society, 2004, 126, 4329-4342.	6.6	171
24	Dimethyl-, dichloro- and chloromethylphenylcarbamates of amylose as chiral stationary phases for high-performance liquid chromatography. Journal of Chromatography A, 1995, 694, 101-109.	1.8	168
25	Polymerization of Phenylacetylene by Rhodium Complexes within a Discrete Space of apo-Ferritin. Journal of the American Chemical Society, 2009, 131, 6958-6960.	6.6	165
26	lon-triggered spring-like motion of a double helicate accompanied by anisotropic twisting. Nature Chemistry, 2010, 2, 444-449.	6.6	165
27	Construction of Double-Stranded Metallosupramolecular Polymers with a Controlled Helicity by Combination of Salt Bridges and Metal Coordination. Journal of the American Chemical Society, 2006, 128, 6806-6807.	6.6	164
28	Oligoresorcinols Fold into Double Helices in Water. Journal of the American Chemical Society, 2006, 128, 7176-7178.	6.6	159
29	Helix-Sense Controlled Polymerization of a Single Phenyl Isocyanide Enantiomer Leading to Diastereomeric Helical Polyisocyanides with Opposite Helix-Sense and Cholesteric Liquid Crystals with Opposite Twist-Sense. Journal of the American Chemical Society, 2006, 128, 708-709.	6.6	158
30	Aryl Ether Dendrimers with an Interior Metalloporphyrin Functionality as a Spectroscopic Probe:Â Interpenetrating Interaction with Dendritic Imidazoles. Macromolecules, 1996, 29, 5236-5238.	2.2	155
31	Encapsulation of Fullerenes in a Helical PMMA Cavity Leading to a Robust Processable Complex with a Macromolecular Helicity Memory. Angewandte Chemie - International Edition, 2008, 47, 515-519.	7.2	154
32	Preparation of Silica Gel-Bonded Amylose through Enzyme-Catalyzed Polymerization and Chiral Recognition Ability of Its Phenylcarbamate Derivative in HPLC. Analytical Chemistry, 1996, 68, 2798-2804.	3.2	149
33	3,5-Dimethylphenylcarbamates of cellulose and amylose regioselectively bonded to silica gel as chiral stationary phases for high-performance liquid chr. Journal of Chromatography A, 1994, 677, 11-19.	1.8	147
34	Two-Dimensional Hierarchical Self-Assembly of One-Handed Helical Polymers on Graphite. Angewandte Chemie - International Edition, 2006, 45, 1245-1248.	7.2	144
35	Control of Main-Chain Stiffness of a Helical Poly(phenylacetylene) by Switching On and Off the Intramolecular Hydrogen Bonding through Macromolecular Helicity Inversion. Angewandte Chemie - International Edition, 2006, 45, 8173-8176.	7.2	144
36	Enantiomer-Selective and Helix-Sense-Selective Living Block Copolymerization of Isocyanide Enantiomers Initiated by Single-Handed Helical Poly(phenyl isocyanide)s. Journal of the American Chemical Society, 2009, 131, 6708-6718.	6.6	144

#	Article	IF	CITATIONS
37	Visualization of synthetic helical polymers by high-resolution atomic force microscopy. Chemical Society Reviews, 2009, 38, 737.	18.7	138
38	Polysaccharide-Based Chiral LC Columns. Synlett, 1998, 1998, 344-360.	1.0	137
39	Remarkable Enhancement of the Enantioselectivity of an Organocatalyzed Asymmetric Henry Reaction Assisted by Helical Poly(phenylacetylene)s Bearing Cinchona Alkaloid Pendants via an Amide Linkage. ACS Macro Letters, 2012, 1, 261-265.	2.3	133
40	3-Fluoro-, 3-chloro- and 3-bromo-5-methylphenylcarbamates of cellulose and amylose as chiral stationary phases for high-performance liquid chromatographic enantioseparation. Journal of Chromatography A, 1997, 787, 67-77.	1.8	125
41	Electron-Induced Switching of the Supramolecular Chirality of Optically Active Polythiophene Aggregates. Journal of the American Chemical Society, 2002, 124, 7943-7949.	6.6	124
42	Dual Memory of Enantiomeric Helices in a Polyacetylene Induced by a Single Enantiomer. Journal of the American Chemical Society, 2005, 127, 5018-5019.	6.6	123
43	Sequence- and Chain-Length-Specific Complementary Double-Helix Formation. Journal of the American Chemical Society, 2008, 130, 14008-14015.	6.6	123
44	Competing Interactions in Hierarchical Porphyrin Self-Assembly Introduce Robustness in Pathway Complexity. Journal of the American Chemical Society, 2018, 140, 7810-7819.	6.6	123
45	A Helical Polyelectrolyte Induced by Specific Interactions with Biomolecules in Water. Journal of the American Chemical Society, 2001, 123, 7441-7442.	6.6	121
46	Two-Dimensional Folded Chain Crystals of a Synthetic Polymer in a Langmuirâ^'Blodgett Film. Journal of the American Chemical Society, 2005, 127, 5788-5789.	6.6	121
47	Double-Stranded Helical Polymers Consisting of Complementary Homopolymers. Journal of the American Chemical Society, 2008, 130, 7938-7945.	6.6	121
48	An Unprecedented Memory of Macromolecular Helicity Induced in an Achiral Polyisocyanide in Water. Journal of the American Chemical Society, 2004, 126, 732-733.	6.6	119
49	Optically Active, Amphiphilic Poly(<i>meta</i> -phenylene ethynylene)s: Synthesis, Hydrogen-Bonding Enforced Helix Stability, and Direct AFM Observation of Their Helical Structures. Journal of the American Chemical Society, 2012, 134, 8718-8728.	6.6	118
50	Chiral information harvesting in dendritic metallopeptides. Nature Chemistry, 2011, 3, 856-861.	6.6	116
51	Poly((4-dihydroxyborophenyl)acetylene) as a Novel Probe for Chirality and Structural Assignments of Various Kinds of Molecules Including Carbohydrates and Steroids by Circular Dichroism. Journal of the American Chemical Society, 1996, 118, 9800-9801.	6.6	110
52	Double Helical Oligoresorcinols Specifically Recognize Oligosaccharides via Heteroduplex Formation through Noncovalent Interactions in Water. Journal of the American Chemical Society, 2007, 129, 9168-9174.	6.6	110
53	Helixâ~'Helix Transition of Optically Active Poly((1R,2S)-N-(4-ethynylbenzyl)norephedrine) Induced by Diastereomeric Acidâr'Base Complexation Using Chiral Stimuli. Journal of the American Chemical Society, 1998, 120, 8895-8896.	6.6	104
54	Mechanism of Helix Induction in Poly(4-carboxyphenyl isocyanide) with Chiral Amines and Memory of the Macromolecular Helicity and Its Helical Structures. Journal of the American Chemical Society, 2009, 131, 10719-10732.	6.6	104

#	Article	IF	CITATIONS
55	Solvent-Induced Chiroptical Changes in Supramolecular Assemblies of an Optically Active, Regioregular Polythiophene. Macromolecules, 2002, 35, 4590-4601.	2.2	103
56	Enantioselective Esterification of Prochiral Phosphonate Pendants of a Polyphenylacetylene Assisted by Macromolecular Helicity:Â Storage of a Dynamic Macromolecular Helicity Memory. Journal of the American Chemical Society, 2005, 127, 2960-2965.	6.6	103
57	Computational Studies on Chiral Discrimination Mechanism of Phenylcarbamate Derivatives of Cellulose. Bulletin of the Chemical Society of Japan, 1999, 72, 1815-1825.	2.0	102
58	Poly(phenylacetylene)s Bearing a Peptide Pendant: Helical Conformational Changes of the Polymer Backbone Stimulated by the Pendant Conformational Change. Chemistry - A European Journal, 2004, 10, 4000-4010.	1.7	101
59	Two- and Three-Dimensional Smectic Ordering of Single-Handed Helical Polymers. Journal of the American Chemical Society, 2008, 130, 229-236.	6.6	101
60	Macromolecular Chirality Induction on Optically Inactive Poly(4-carboxyphenyl isocyanide) with Chiral Amines:  A Dynamic Conformational Transition of Poly(phenyl isocyanide) Derivatives. Journal of the American Chemical Society, 2002, 124, 7448-7458.	6.6	100
61	Well-Defined Lyotropic Liquid Crystalline Properties of Rigid-Rod Helical Polyacetylenes. Macromolecules, 2005, 38, 4061-4064.	2.2	98
62	Oxidative Esterification, Thioesterification, and Amidation of Aldehydes by a Twoâ€Component Organocatalyst System Using a Chiral Nâ€Heterocyclic Carbene and Redoxâ€Active Riboflavin. Chemistry - A European Journal, 2011, 17, 8009-8013.	1.7	98
63	Synthesis and chiral recognition ability of helical polyacetylenes bearing helicene pendants. Polymer Chemistry, 2014, 5, 4909.	1.9	97
64	Helix-Sense Inversion of Poly(phenylacetylene) Derivatives Bearing an Optically Active Substituent Induced by External Chiral and Achiral Stimuli. Macromolecules, 2003, 36, 1480-1486.	2.2	96
65	Direct Detection of Hardly Detectable Hidden Chirality of Hydrocarbons and Deuterated Isotopomers by a Helical Polyacetylene through Chiral Amplification and Memory. Journal of the American Chemical Society, 2018, 140, 3270-3276.	6.6	96
66	Computational studies on chiral discrimination mechanism of cellulose trisphenylcarbamate. Journal of Chromatography A, 1995, 694, 347-354.	1.8	95
67	Synthesis and Macromolecular Helicity Induction of a Stereoregular Polyacetylene Bearing a Carboxy Group with Natural Amino Acids in Water. Macromolecules, 2000, 33, 4616-4618.	2.2	95
68	Chiral Stimuli-Responsive Gels:Â Helicity Induction in Poly(phenylacetylene) Gels Bearing a Carboxyl Group with Chiral Amines. Journal of the American Chemical Society, 2003, 125, 2516-2523.	6.6	94
69	Supramolecular Control of Unwinding and Rewinding of a Double Helix of Oligoresorcinol Using Cyclodextrin/Adamantane System. Journal of the American Chemical Society, 2007, 129, 109-112.	6.6	94
70	Stereospecific Polymerization of Propiolic Acid with Rhodium Complexes in the Presence of Bases and Helix Induction on the Polymer in Water. Macromolecules, 2001, 34, 1160-1164.	2.2	93
71	Synthesis and structure determination of helical polymers. Polymer Journal, 2010, 42, 3-16.	1.3	93
72	Unexpectedly Strong Chiral Amplification of Chiral/Achiral and Chiral/Chiral Copolymers of Biphenylylacetylenes and Further Enhancement/Inversion and Memory of the Macromolecular Helicity. Journal of the American Chemical Society, 2019, 141, 7605-7614.	6.6	92

Ειji Yashima

#	Article	IF	CITATIONS
73	Main-Chain Optically Active Riboflavin Polymer for Asymmetric Catalysis and Its Vapochromic Behavior. Journal of the American Chemical Society, 2012, 134, 15103-15113.	6.6	91
74	Asymmetric Polymerization of Isocyanates with Optically Active Anionic Initiators. Polymer Journal, 1993, 25, 391-396.	1.3	90
75	Helix-Sense-Controlled Synthesis of Optically Active Poly(methyl methacrylate) Stereocomplexes. Journal of the American Chemical Society, 2008, 130, 11889-11891.	6.6	90
76	Selective Functionalization on [60]Fullerene Governed by Tether Length. Journal of the American Chemical Society, 1997, 119, 926-932.	6.6	88
77	Macromolecular Helicity Induction on a Poly(phenylacetylene) with C2-Symmetric Chiral [60]Fullerene-Bisadducts. Journal of the American Chemical Society, 2004, 126, 11711-11717.	6.6	88
78	Synthesis of Complementary Double-Stranded Helical Oligomers through Chiral and Achiral Amidiniumâ^'Carboxylate Salt Bridges and Chiral Amplification in Their Double-Helix Formation. Journal of the American Chemical Society, 2011, 133, 3419-3432.	6.6	88
79	Asymmetric polymerization of methacrylates. Progress in Polymer Science, 1990, 15, 263-298.	11.8	86
80	Specific base recognition of oligodeoxynucleotides by capillary affinity gel electrophoresis using polyacrylamide-poly(9-vinyladenine) conjugated gel. Analytical Chemistry, 1992, 64, 1920-1925.	3.2	85
81	Twoâ€Dimensional Helixâ€Bundle Formation of a Dynamic Helical Poly(phenylacetylene) with Achiral Pendant Groups on Graphite. Angewandte Chemie - International Edition, 2007, 46, 7605-7608.	7.2	85
82	Temperature Dependence of Helical Structures of Poly(phenylacetylene) Derivatives Bearing an Optically Active Substituent. Chemistry - A European Journal, 2002, 8, 5112-5120.	1.7	84
83	Versatile Supramolecular Copper(II) Complexes for Henry and Azaâ€Henry Reactions. Advanced Synthesis and Catalysis, 2009, 351, 1255-1262.	2.1	84
84	Helix-Sense-Selective Synthesis of Right- and Left-Handed Helical Luminescent Poly(diphenylacetylene)s with Memory of the Macromolecular Helicity and Their Helical Structures. Journal of the American Chemical Society, 2020, 142, 7668-7682.	6.6	83
85	Synthesis of Optically Active Vasicinone Based on Intramolecular Aza-Wittig Reaction and Asymmetric Oxidation1. Journal of Organic Chemistry, 1996, 61, 7316-7319.	1.7	81
86	First Isolation and Characterization of Eight Regioisomers for [60]Fullereneâ^'Benzyne Bisadducts. Organic Letters, 2001, 3, 1193-1196.	2.4	81
87	Conductive Metal Nanowires Templated by the Nucleoprotein Filaments, Complex of DNA and RecA Protein. Journal of the American Chemical Society, 2005, 127, 8120-8125.	6.6	79
88	Helicity Induction and Conformational Dynamics of Poly(bis(4-carboxyphenoxy)phosphazene) with Optically Active Amines. Journal of the American Chemical Society, 2000, 122, 7813-7814.	6.6	77
89	Metal-Induced Chirality Induction and Chiral Recognition of Optically Active, Regioregular Polythiophenes. Macromolecules, 1999, 32, 7942-7945.	2.2	71
90	Graft copolymers having hydrophobic backbone and hydrophilic branches. IV. A copolymerization study of water-soluble oligovinylpyrrolidone macromonomers. Journal of Polymer Science Part A, 1989, 27, 3521-3530.	2.5	70

#	Article	IF	CITATIONS
91	The first total synthesis of (â^)-benzomalvin A and benzomalvin B via the intramolecular aza-Wittig reactions. Tetrahedron, 1998, 54, 7997-8008.	1.0	70
92	Construction of Covalent Organic Nanotubes by Light-Induced Cross-Linking of Diacetylene-Based Helical Polymers. Journal of the American Chemical Society, 2016, 138, 11001-11008.	6.6	67
93	Chiral and Chirality Discrimination on Helical Polyacetylenes Analytical Sciences, 2002, 18, 3-6.	0.8	65
94	Spin Filtering Along Chiral Polymers. Angewandte Chemie - International Edition, 2020, 59, 14671-14676.	7.2	64
95	Helical Polymers with Dynamic and Static Macromolecular Helicity Memory: The Power of Helicity Memory for Helical Polymer Synthesis and Applications. Bulletin of the Chemical Society of Japan, 2021, 94, 2637-2661.	2.0	61
96	Asymmetric polymerization of aromatic isocyanates with optically active anionic initiators. Journal of Polymer Science Part A, 1994, 32, 309-315.	2.5	59
97	Allosteric Regulation of Unidirectional Spring-like Motion of Double-Stranded Helicates. Journal of the American Chemical Society, 2016, 138, 4852-4859.	6.6	59
98	Synthesis of Singleâ€Handed Helical Spiro onjugated Ladder Polymers through Quantitative and Chemoselective Cyclizations**. Angewandte Chemie - International Edition, 2021, 60, 11294-11299.	7.2	50
99	Helicity induction and memory effect in poly(biphenylylacetylene)s bearing various functional groups and their use as switchable chiral stationary phases for HPLC. Polymer Chemistry, 2019, 10, 6260-6268.	1.9	45
100	Emergence of Highly Enantioselective Catalytic Activity in a Helical Polymer Mediated by Deracemization of Racemic Pendants. Journal of the American Chemical Society, 2021, 143, 12725-12735.	6.6	45
101	Helical springs as a color indicator for determining chirality and enantiomeric excess. Science Advances, 2021, 7, .	4.7	44
102	Spiroborate-Based Double-Stranded Helicates: <i>Meso</i> -to- <i>Racemo</i> Isomerization and Ion-Triggered Springlike Motion of the <i>Racemo</i> -Helicate. Journal of the American Chemical Society, 2018, 140, 17027-17039.	6.6	36
103	Racemic Monomerâ€Based Oneâ€Handed Helical Polymer Recognizes Enantiomers through Autoâ€Evolution of Its Helical Handedness Excess. Angewandte Chemie - International Edition, 2021, 60, 4625-4632.	7.2	36
104	Chiral/Achiral Copolymers of Biphenylylacetylenes Bearing Various Substituents: Chiral Amplification through Copolymerization, Followed by Enhancement/Inversion and Memory of the Macromolecular Helicity. Macromolecules, 2020, 53, 973-981.	2.2	34
105	Chiral Template-Directed Regio-, Diastereo-, and Enantioselective Photodimerization of an Anthracene Derivative Assisted by Complementary Amidinium–Carboxylate Salt Bridge Formation. Journal of the American Chemical Society, 2017, 139, 7388-7398.	6.6	31
106	Helicity Induction and Its Static Memory of Poly(biphenylylacetylene)s Bearing Pyridine <i>N</i> â€Oxide Groups and Their Use as Asymmetric Organocatalysts. Journal of Polymer Science Part A, 2019, 57, 2481-2490.	2.5	31
107	Helix-Sense-Selective Encapsulation of Helical Poly(lactic acid)s within a Helical Cavity of Syndiotactic Poly(methyl methacrylate) with Helicity Memory. Journal of the American Chemical Society, 2020, 142, 21913-21925.	6.6	26
108	Static Memory of Enantiomeric Helices Induced in a Poly(biphenylylacetylene) by a Single Enantiomer Assisted by Temperature- and Solvent-Driven Helix Inversion. Macromolecules, 2017, 50, 7801-7806.	2.2	24

#	Article	IF	CITATIONS
109	Chirality Control and Its Memory at Microphase-Separated Interface of Self-Assembled Chiral Block Copolymers for Nanostructured Chiral Materials. ACS Macro Letters, 2017, 6, 980-986.	2.3	23
110	Water-mediated deracemization of a bisporphyrin helicate assisted by diastereoselective encapsulation of chiral guests. Nature Communications, 2019, 10, 1457.	5.8	23
111	Supramolecular Helical Assemblies of Dirhodium(II) Paddlewheels with 1,4-Diazabicyclo[2.2.2]octane: A Remarkable Substituent Effect on the Helical Sense Preference and Amplification of the Helical Handedness Excess of Metallo-Supramolecular Helical Polymers. Journal of the American Chemical Society. 2022. 144. 2775-2792.	6.6	21
112	One‣tep Simultaneous Synthesis of Circularly Polarized Luminescent Multiple Helicenes Using a Chrysene Framework. Chemistry - an Asian Journal, 2021, 16, 769-774.	1.7	18
113	Synthesis of Singleâ€Handed Helical Spiroâ€Conjugated Ladder Polymers through Quantitative and Chemoselective Cyclizations**. Angewandte Chemie, 2021, 133, 11394-11399.	1.6	18
114	Consecutively fused singleâ€, doubleâ€, and tripleâ€expanded helicenes. Natural Sciences, 2022, 2, .	1.0	17
115	Enantiodifferentiating Photodimerization of a 2,6â€Disubstituted Anthracene Assisted by Supramolecular Doubleâ€Helix Formation with Chiral Amines. Angewandte Chemie - International Edition, 2020, 59, 7478-7486.	7.2	15
116	Catalytic One-Handed Helix Induction and Subsequent Static Memory of Poly(biphenylylacetylene)s Assisted by a Small Amount of Carboxy Groups Introduced at the Pendants. ACS Macro Letters, 2022, 11, 525-531.	2.3	15
117	Control of Conformation and Chirality of Nonplanar ï€â€Conjugated Diporphyrins Using Substituents and Axial Ligands. Chemistry - an Asian Journal, 2016, 11, 936-942.	1.7	12
118	Allosteric regulation of metal-binding sites inside an optically-active helical foldamer and its tubular assemblies. Chemical Communications, 2018, 54, 2417-2420.	2.2	12
119	Water-Mediated Reversible Control of Three-State Double-Stranded Titanium(IV) Helicates. Journal of the American Chemical Society, 2021, 143, 4346-4358.	6.6	11
120	Fluorescent molecular spring that visualizes the extension and contraction motions of a double-stranded helicate bearing terminal pyrene units triggered by release and binding of alkali metal ions. Chemical Communications, 2019, 55, 12084-12087.	2.2	10
121	Macromolecular helicity induction and static helicity memory of poly(biphenylylacetylene)s bearing aromatic pendant groups and their use as chiral stationary phases for highâ€performance liquid chromatography. Chirality, 2021, , .	1.3	9
122	Spin Filtering Along Chiral Polymers. Angewandte Chemie, 2020, 132, 14779-14784.	1.6	8
123	Racemic Monomerâ€Based Oneâ€Handed Helical Polymer Recognizes Enantiomers through Autoâ€Evolution of Its Helical Handedness Excess. Angewandte Chemie, 2021, 133, 4675-4682.	1.6	7
124	Tugâ€ofâ€War in a Dynamic Helical Peptide: Solventâ€Induced Helixâ€Helix Transition of a Lactamâ€Bridged Peptide Composed of Point―and Axial Chiralities Remote from Each Other. Chemistry - an Asian Journal, 2018, 13, 3150-3154.	1.7	5
125	Enantiodifferentiating Photodimerization of a 2,6â€Disubstituted Anthracene Assisted by Supramolecular Doubleâ€Helix Formation with Chiral Amines. Angewandte Chemie, 2020, 132, 7548-7556.	1.6	5
126	Encapsulation of Aromatic Guests in the Bisporphyrin Cavity of a Double-Stranded Spiroborate Helicate: Thermodynamic and Kinetic Studies and the Encapsulation Mechanism. Journal of Organic Chemistry, 2021, 86, 10501-10516.	1.7	5

#	Article	IF	CITATIONS
127	Remote-controlled regio- and diastereodifferentiating photodimerization of a dynamic helical peptide-bound 2-substituted anthracene. Chemical Communications, 2020, 56, 13433-13436.	2.2	3
128	Selective formation of spiroborate-based double-stranded <i>hetero</i> -helicates assisted by donor–acceptor interactions. Organic Chemistry Frontiers, 2021, 8, 2551-2555.	2.3	1
129	The helixâ€inversion mechanism in doubleâ€stranded helical oligomers bridged by rotary cyclic boronate esters. Journal of Computational Chemistry, 2019, 40, 2036-2042.	1.5	0
130	Complementary doubleâ€stranded helical oligomers bearing achiral bifunctional groups that catalyze asymmetric aldol reaction. Chirality, 2020, 32, 254-264.	1.3	0
131	Innenrücktitelbild: Enantiodifferentiating Photodimerization of a 2,6â€Disubstituted Anthracene Assisted by Supramolecular Doubleâ€Helix Formation with Chiral Amines (Angew. Chem. 19/2020). Angewandte Chemie, 2020, 132, 7695-7695.	1.6	0
132	Frontispiece: Racemic Monomerâ€Based Oneâ€Handed Helical Polymer Recognizes Enantiomers through Autoâ€Evolution of Its Helical Handedness Excess. Angewandte Chemie - International Edition, 2021, 60, .	7.2	0
133	Frontispiz: Racemic Monomerâ€Based Oneâ€Handed Helical Polymer Recognizes Enantiomers through Autoâ€Evolution of Its Helical Handedness Excess. Angewandte Chemie, 2021, 133, .	1.6	Ο
134	Chiral amplification of supramolecular coassemblies of chiral and achiral achiral achiral acylhydrazine-functionalized biphenyls and their copolymers. Polymer Journal, 0, , .	1.3	0
135	Editors' note. Chirality, 2022, 34, 699-700.	1.3	0