List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/625564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extinction risk from climate change. Nature, 2004, 427, 145-148.	27.8	5,985
2	Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species' current and future distributions. Ecological Modelling, 2005, 186, 251-270.	2.5	401
3	Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change, 2018, 8, 579-587.	18.8	330
4	Impacts of climate change on the world's most exceptional ecoregions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2306-2311.	7.1	312
5	Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distributions, 2009, 15, 409-420.	4.1	263
6	Why is the choice of future climate scenarios for species distribution modelling important?. Ecology Letters, 2008, 11, 1135-1146.	6.4	257
7	Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. Journal of Ecology, 2010, 98, 790-799.	4.0	185
8	ENMTools 1.0: an R package for comparative ecological biogeography. Ecography, 2021, 44, 504-511.	4.5	166
9	Phenological Changes in the Southern Hemisphere. PLoS ONE, 2013, 8, e75514.	2.5	161
10	Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Global Change Biology, 2007, 13, 1368-1385.	9.5	157
11	Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change. Global Change Biology, 2002, 8, 954-971.	9.5	139
12	Which species distribution models are more (or less) likely to project broad-scale, climate-induced shifts in species ranges?. Ecological Modelling, 2016, 342, 135-146.	2.5	90
13	Conservation prioritization can resolve the flagship species conundrum. Nature Communications, 2020, 11, 994.	12.8	80
14	Hydraulic failure and tree size linked with canopy dieâ€back in eucalypt forest during extreme drought. New Phytologist, 2021, 230, 1354-1365.	7.3	70
15	The Biodiversity and Climate Change Virtual Laboratory: Where ecology meets big data. Environmental Modelling and Software, 2016, 76, 182-186.	4.5	67
16	A matter of timing: changes in the first date of arrival and last date of departure of Australian migratory birds. Global Change Biology, 2006, 12, 1339-1354.	9.5	66
17	Does the choice of climate baseline matter in ecological niche modelling?. Ecological Modelling, 2010, 221, 2280-2286.	2.5	57
18	Assessment and prioritisation of plant species at risk from myrtle rust (Austropuccinia psidii) under current and future climates in Australia. Biological Conservation, 2018, 218, 154-162.	4.1	56

#	Article	IF	CITATIONS
19	Potential impacts of climate change on habitat suitability for the Queensland fruit fly. Scientific Reports, 2017, 7, 13025.	3.3	54
20	Climate, soil or both? Which variables are better predictors of the distributions of Australian shrub species?. PeerJ, 2017, 5, e3446.	2.0	50
21	Substantial declines in urban tree habitat predicted under climate change. Science of the Total Environment, 2019, 685, 451-462.	8.0	49
22	Uncertainty in predictions of extinction risk/Effects of changes in climate and land use/Climate change and extinction risk (reply). Nature, 2004, 430, 34-34.	27.8	47
23	Influence of adaptive capacity on the outcome of climate change vulnerability assessment. Scientific Reports, 2017, 7, 12979.	3.3	47
24	A global comparison of the climatic niches of urban and native tree populations. Global Ecology and Biogeography, 2018, 27, 629-637.	5.8	44
25	Essential outcomes for COP26. Global Change Biology, 2022, 28, 1-3.	9.5	40
26	Modelling the impact of <i>Hieracium</i> spp. on protected areas in Australia under future climates. Ecography, 2009, 32, 757-764.	4.5	39
27	Effects of elevated CO2 and temperature on development and consumption rates of Octotoma championi and O. scabripennis feeding on Lantana camara. Entomologia Experimentalis Et Applicata, 2003, 108, 169-178.	1.4	36
28	The Global Urban Tree Inventory: A database of the diverse tree flora that inhabits the world's cities. Global Ecology and Biogeography, 2020, 29, 1907-1914.	5.8	36
29	Identifying in situ climate refugia for plant species. Ecography, 2018, 41, 1850-1863.	4.5	35
30	Incorporating future climate uncertainty into the identification of climate change refugia for threatened species. Biological Conservation, 2019, 237, 230-237.	4.1	35
31	Climate and land-use changes reduce the benefits of terrestrial protected areas. Nature Climate Change, 2021, 11, 1105-1110.	18.8	35
32	New methods for measuring ENM breadth and overlap in environmental space. Ecography, 2019, 42, 444-446.	4.5	32
33	How can knowledge of the climate niche inform the weed risk assessment process? A case study of <i><scp>C</scp>hrysanthemoides monilifera</i> in <scp>A</scp> ustralia. Diversity and Distributions, 2014, 20, 613-625.	4.1	30
34	MOLECULAR DETECTION OF ANTIBIOTIC-RESISTANCE DETERMINANTS IN <i>ESCHERICHIA COLI</i> ISOLATED FROM THE ENDANGERED AUSTRALIAN SEA LION (<i>NEOPHOCA CINEREA</i>). Journal of Wildlife Diseases, 2015, 51, 555-563.	0.8	30
35	Simulating streamflow in the Upper Halda Basin of southeastern Bangladesh using SWAT model. Hydrological Sciences Journal, 2020, 65, 138-151.	2.6	25
36	Global Projections of 21st Century Land-Use Changes in Regions Adjacent to Protected Areas. PLoS ONE, 2012, 7, e43714.	2.5	22

#	Article	IF	CITATIONS
37	Giardia duodenalis and Cryptosporidium occurrence in Australian sea lions (Neophoca cinerea) exposed to varied levels of human interaction. International Journal for Parasitology: Parasites and Wildlife, 2014, 3, 269-275.	1.5	22
38	Continental scale analysis of bird migration timing: influences of climate and life history traits—a generalized mixture model clustering and discriminant approach. International Journal of Biometeorology, 2014, 58, 1147-1162.	3.0	22
39	Impacts of climate change on high priority fruit fly species in Australia. PLoS ONE, 2020, 15, e0213820.	2.5	22
40	Prioritizing the protection of climate refugia: designing a climate-ready protected area network. Journal of Environmental Planning and Management, 2019, 62, 2588-2606.	4.5	21
41	Environmental tolerance governs the presence of reef corals at latitudes beyond reef growth. Global Ecology and Biogeography, 2016, 25, 979-987.	5.8	20
42	How well documented is Australia's flora? Understanding spatial bias in vouchered plant specimens. Austral Ecology, 2017, 42, 690-699.	1.5	19
43	Assessing the vulnerability of Australia's urban forests to climate extremes. Plants People Planet, 2019, 1, 387-397.	3.3	17
44	Climate change threatens the most biodiverse regions of Mexico. Biological Conservation, 2019, 240, 108215.	4.1	15
45	Shifting time: recent changes to the phenology of Australian species. Climate Research, 2015, 63, 203-214.	1.1	15
46	Identifying climate refugia for 30 Australian rainforest plant species, from the last glacial maximum to 2070. Landscape Ecology, 2019, 34, 2883-2896.	4.2	14
47	An integrated approach to assessing abiotic and biotic threats to postâ€fire plant species recovery: Lessons from the 2019–2020 Australian fire season. Global Ecology and Biogeography, 2022, 31, 2056-2069.	5.8	14
48	Combining dispersal, landscape connectivity and habitat suitability to assess climate-induced changes in the distribution of Cunningham's skink, Egernia cunninghami. PLoS ONE, 2017, 12, e0184193.	2.5	12
49	Combined Impacts of Climate and Land Use Changes on Long-Term Streamflow in the Upper Halda Basin, Bangladesh. Sustainability, 2021, 13, 12067.	3.2	12
50	Generalized "avatar―niche shifts improve distribution models for invasive species. Diversity and Distributions, 2014, 20, 1296-1306.	4.1	11
51	National assessments of species vulnerability to climate change strongly depend on selected data sources. Diversity and Distributions, 2021, 27, 1367-1382.	4.1	9
52	The Effect of Co-occurring Heat and Water Stress on Reproductive Traits and Yield of Tomato (<i>Solanum lycopersicum</i>). Horticulture Journal, 2020, 89, 530-536.	0.8	8
53	Cunningham's skinks show low genetic connectivity and signatures of divergent selection across its distribution. Ecology and Evolution, 2017, 7, 48-57.	1.9	7
54	Taxonomic shortfalls in digitised collections of Australia's flora. Biodiversity and Conservation, 2020, 29, 333-343.	2.6	7

#	Article	IF	CITATIONS
55	A journey through time: exploring temporal patterns amongst digitized plant specimens from Australia. Systematics and Biodiversity, 2018, 16, 604-613.	1.2	6
56	The impacts of climate change on Australian and New Zealand flora and fauna. , 2014, , 65-82.		4
57	Potential impacts of a future persistent El Niño or La Niña on three subspecies of Australian butterflies. Biotropica, 2017, 49, 110-116.	1.6	3
58	Tracking habitat or testing its suitability? Similar distributional patterns can hide very different histories of persistence versus nonequilibrium dynamics. Evolution; International Journal of Organic Evolution, 2022, 76, 1209-1228.	2.3	3
59	Impacts of Climate Change on the Distributions of Allergenic Species. , 0, , 29-49.		2
60	Embedding biodiversity research into climate adaptation policy and practice. Global Change Biology, 2021, 27, 4935-4945.	9.5	2
61	Land use planning to support climate change adaptation in threatened plant communities. Journal of Environmental Management, 2021, 298, 113533.	7.8	0