Huarong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6255389/publications.pdf

Version: 2024-02-01

89	2,410	28	45
papers	citations	h-index	g-index
90	90	90	3533
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hollow Metal–Organic Framework Nanospheres via Emulsion-Based Interfacial Synthesis and Their Application in Size-Selective Catalysis. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18163-18171.	4.0	159
2	A novel approach to raspberry-like particles for superhydrophobic materials. Journal of Materials Chemistry, 2009, 19, 1297.	6.7	138
3	Synthesis of Cagelike Polymer Microspheres with Hollow Core/Porous Shell Structures by Self-Assembly of Latex Particles at the Emulsion Droplet Interface. Chemistry of Materials, 2005, 17, 5891-5892.	3.2	125
4	Tumor Reoxygenation and Blood Perfusion Enhanced Photodynamic Therapy using Ultrathin Graphdiyne Oxide Nanosheets. Nano Letters, 2019, 19, 4060-4067.	4.5	118
5	Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14180-14186.	4.0	97
6	Dramatic Fluorescence Enhancement of Bare Carbon Dots through Facile Reduction Chemistry. ChemPhysChem, 2012, 13, 3549-3555.	1.0	73
7	Design of yolk–shell Fe ₃ O ₄ @PMAA composite microspheres for adsorption of metal ions and pH-controlled drug delivery. Journal of Materials Chemistry A, 2014, 2, 7065-7074.	5.2	69
8	UV light induced plasticization and light activated shape memory of spiropyran doped ethylene-vinyl acetate copolymers. Soft Matter, 2014, 10, 3748.	1.2	63
9	Synthesis of the raspberryâ€like PS/PAN particles with anisotropic properties via seeded emulsion polymerization initiated by γâ€ray radiation. Journal of Polymer Science Part A, 2010, 48, 5198-5205.	2.5	60
10	Macroporous magnetic poly(styrene–divinylbenzene) nanocomposites prepared via magnetite nanoparticles-stabilized high internal phase emulsions. Journal of Materials Chemistry, 2011, 21, 12865.	6.7	58
11	A simple reduction-oxidation route to prepare Co3O4 nanocrystals. Materials Research Bulletin, 2001, 36, 2383-2387.	2.7	56
12	A novel approach to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via interfacial polymerization. Journal of Materials Chemistry, 2006, 16, 4480.	6.7	51
13	Highly active new \hat{l} ±-diimine nickel catalyst for the polymerization of \hat{l} ±-olefins. Journal of Organometallic Chemistry, 2005, 690, 1314-1323.	0.8	50
14	Facile Preparation of Raspberry-Like Superhydrophobic Polystyrene Particles via Seeded Dispersion Polymerization. Langmuir, 2013, 29, 11440-11448.	1.6	50
15	Controlled Synthesis of Different Shapes of Cu ₂ O via \hat{I}^3 -Irradiation. Crystal Growth and Design, 2009, 9, 1733-1740.	1.4	48
16	Fabrication of Hollow Mesoporous CdS@TiO ₂ @Au Microspheres with High Photocatalytic Activity for Hydrogen Evolution from Water under Visible Light. ACS Sustainable Chemistry and Engineering, 2018, 6, 13766-13777.	3.2	43
17	Synthesis and characterization of polyacrylonitrile–silver nanocomposites by γ-irradiation. Radiation Physics and Chemistry, 2001, 61, 89-91.	1.4	41
18	Preparation of High Internal Water-Phase Double Emulsions Stabilized by a Single Anionic Surfactant for Fabricating Interconnecting Porous Polymer Microspheres. Langmuir, 2014, 30, 12154-12163.	1.6	39

#	Article	IF	CITATIONS
19	A facile route to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via inverse miniemulsion polymerization. Journal of Polymer Science Part A, 2008, 46, 3900-3910.	2.5	38
20	Fabrication of Novel Multihollow Superparamagnetic Magnetite/Polystyrene Nanocomposite Microspheres via Water-in-Oil-in-Water Double Emulsions. Langmuir, 2008, 24, 10395-10401.	1.6	38
21	Preparation and characterization of film-forming raspberry-like polymer/silica nanocomposites via soap-free emulsion polymerization and the sol–gel process. Colloid and Polymer Science, 2013, 291, 1181-1190.	1.0	35
22	Preparation of polymeric nanocapsules by radiation induced miniemulsion polymerization. European Polymer Journal, 2007, 43, 2848-2855.	2.6	34
23	Mechanical Activation of Platinum–Acetylide Complex for Olefin Hydrosilylation. ACS Macro Letters, 2017, 6, 1146-1150.	2.3	33
24	\hat{l}^3 -Irradiation preparation of CdS nano-particles and their formation mechanism in non-water system. Radiation Physics and Chemistry, 2001, 61, 61-64.	1.4	32
25	Cagelike polymer microspheres with hollow core/porous shell structures. Journal of Polymer Science Part A, 2007, 45, 933-941.	2.5	32
26	Novel Walnut-like Multihollow Polymer Particles: Synthesis and Morphology Control. Langmuir, 2010, 26, 1635-1641.	1.6	31
27	Facile preparation of monodisperse hollow crossâ€linked chitosan microspheres. Journal of Polymer Science Part A, 2008, 46, 228-237.	2.5	30
28	Controllable Synthesis of CuO Nanowires and Cu ₂ O Crystals with Shape Evolution via \hat{I}^3 -Irradiation. Inorganic Chemistry, 2010, 49, 7217-7219.	1.9	29
29	Preparation of macroporous polyHIPE foams via radiation-induced polymerization at room temperature. Colloid and Polymer Science, 2013, 291, 1649-1656.	1.0	29
30	\hat{l}^3 -Irradiation preparation of cadmium selenide nano-particles in ethylenediamine system. Materials Research Bulletin, 2001, 36, 1609-1613.	2.7	27
31	Preparation of superparamagnetic \hat{l}^3 -Fe2O3 nanoparticles in nonaqueous medium by \hat{l}^3 -irradiation. Journal of Magnetism and Magnetic Materials, 2006, 302, 263-266.	1.0	26
32	One-step synthesis of manganese dioxide/polystyrene nanocomposite foams via high internal phase emulsion and study of their catalytic activity. Colloid and Polymer Science, 2010, 288, 1031-1039.	1.0	24
33	Facile synthesis and catalytic application of Ag–Fe2O3–carbons nanocomposites. Materials Letters, 2013, 100, 296-298.	1.3	24
34	In situ Synthesis and Characterization of Spherical CdS/Polyacrylamide Nanocomposites by \hat{I}^3 -Irradiation in W/O Microemulsions. Chemistry Letters, 2001, 30, 924-925.	0.7	21
35	Study of emulsion polymerization stabilized by amphiphilic polymer nanoparticles. Colloid and Polymer Science, 2011, 289, 1543-1551.	1.0	21
36	Facile fabrication of snowman-like Janus particles with asymmetric fluorescent properties via seeded emulsion polymerization. Colloid and Polymer Science, 2013, 291, 2993-3003.	1.0	20

#	Article	IF	CITATIONS
37	Fabrication of CdS/Pt/MIL-125 with Effective Spatial Separation for Improved Visible-Light Catalytic H ₂ Evolution Using \hat{I}^3 -Ray Irradiation. ACS Sustainable Chemistry and Engineering, 2020, 8, 18196-18205.	3.2	19
38	The formation mechanism of Cuâ \in "Pd alloys in mixed aqueous solutions by \hat{l}^3 -irradiation. Radiation Physics and Chemistry, 1999, 55, 357-361.	1.4	18
39	Synthesis and characterization of polyacrylamide–nickel amorphous nanocomposites by γ-irradiation. Materials Letters, 2000, 46, 205-208.	1.3	18
40	Controllable synthesis of anisotropic silica/polymer composite particles via seeded dispersion polymerization. Materials Chemistry and Physics, 2017, 195, 105-113.	2.0	18
41	Formation of monodisperse polyacrylamide particles by radiation-induced dispersion polymerization. I. Synthesis and polymerization kinetics. Journal of Applied Polymer Science, 2002, 86, 2567-2573.	1.3	17
42	Novel method for the preparation of core–shell nanoparticles with movable Ag core and polystyrene loop shell. Journal of Solid State Chemistry, 2006, 179, 1253-1258.	1.4	17
43	Fabrication of CdS nanorods in inverse microemulsion using HEC as a template by a convenient Î ³ -irradiation technique. Journal of Crystal Growth, 2006, 290, 592-596.	0.7	17
44	Synthesis and characterization of MoO2/P(St-co-MMA-co-AA) microspheres via microemulsion by \hat{I}^3 -ray radiation. Solid State Sciences, 2006, 8, 526-530.	1.5	17
45	Effects of concentration of nonionic surfactant and molecular weight of polymers on the morphology of anisotropic polystyrene/poly(methyl methacrylate) composite particles prepared by solvent evaporation method. Colloid and Polymer Science, 2009, 287, 819-827.	1.0	17
46	Preparation of highly interconnected porous polymer microbeads <i>via</i> suspension polymerization of high internal phase emulsions for fast removal of oil spillage from aqueous environments. RSC Advances, 2019, 9, 25730-25738.	1.7	17
47	Tailoring the morphology of emulsion-based (glycidylmethacrylate-divinylbenzene) monoliths. European Polymer Journal, 2014, 57, 127-136.	2.6	16
48	Growth and morphological evolution of hexapod-shaped cuprous oxide microcrystals at room temperature. Canadian Journal of Chemistry, 2004, 82, 1341-1345.	0.6	15
49	Self-assembly of latex particles at droplet interface to prepare monodisperse emulsion droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 80-84.	2.3	15
50	Synthesis of snowmanâ€like polymerâ€silica asymmetric particles by combination of hydrolytic condensation process with γâ€ray radiation initiated seeded emulsion polymerization. Journal of Polymer Science Part A, 2014, 52, 339-348.	2.5	15
51	The facile synthesis of PMMA polyHIPEs with highly interconnected porous microstructures. Journal of Materials Science, 2016, 51, 9005-9018.	1.7	15
52	Encapsulating surface-clean metal nanoparticles inside metal–organic frameworks for enhanced catalysis using a novel γ-ray radiation approach. Inorganic Chemistry Frontiers, 2018, 5, 29-38.	3.0	15
53	A novel approach for preparation of "cage-like―multihollow polymer microspheres through sulfonated polystyrene particles. Colloid and Polymer Science, 2012, 290, 1749-1757.	1.0	13
54	Tailoring the morphology and epoxy group content of glycidyl methacrylate-based polyHIPE monoliths via radiation-induced polymerization at room temperature. Colloid and Polymer Science, 2018, 296, 1005-1016.	1.0	13

#	Article	IF	CITATIONS
55	Fabrication of Nano-rod Copper-polymer Composites by \hat{I}^3 -Irradiation Route in a Heterogeneous System. Chemistry Letters, 2001, 30, 458-459.	0.7	12
56	Large-scale growth and shape evolution of micrometer-sized Cu2O cubes with concave planes via \hat{l}^3 -irradiation. Solid State Sciences, 2008, 10, 1322-1326.	1.5	12
57	The effect of irradiation on morphology and properties of the PET/HDPE blends with trimethylol propane trimethacrylate (TMPTA). Polymer Bulletin, 2009, 63, 587-597.	1.7	12
58	Fluorescence Enhancement and Radiolysis of Carbon Dots through Aqueous \hat{l}^3 Radiation Chemistry. Journal of Physical Chemistry C, 2012, 116, 15826-15832.	1.5	12
59	Synthesis and characterization of \hat{l} ±-FeO(OH) nano-rods in situ via a solution-oxidation. Materials Letters, 2001, 49, 185-188.	1.3	11
60	Preparation of polystyrene latex particles from radiation induced miniemulsion polymerization using Y-like branched emulsifiers as the sole stabilizer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 295, 7-15.	2.3	11
61	Oneâ€Pot Synthesis of Colloidal Nanobowls and Hybrid Multipodâ€ike Nanoparticles by Radiation Miniemulsion Polymerization. Macromolecular Rapid Communications, 2011, 32, 1615-1619.	2.0	11
62	Synthesis of snowmanâ€like magnetic/nonmagnetic nanocomposite asymmetric particles via seeded emulsion polymerization initiated by γâ€ray radiation. Journal of Polymer Science Part A, 2012, 50, 4599-4611.	2.5	11
63	Facile approach to glycidyl methacrylate-based polyHIPE monoliths with high epoxy-group content. Colloid and Polymer Science, 2014, 292, 2563-2570.	1.0	11
64	Formation of microporous polymeric materials by microemulsion radiation polymerization of butyl acrylate. Journal of Applied Polymer Science, 2000, 77, 1989-1993.	1.3	10
65	Self-assembly of pH-responsive acrylate latex particles at emulsion droplets interface. Journal of Applied Polymer Science, 2007, 105, 1018-1024.	1.3	10
66	Fabrication of superparamagnetic magnetite/poly(styrene-co-12-acryloxy-9-octadecenoic acid) nanocomposite microspheres with controllable structure. Journal of Colloid and Interface Science, 2009, 338, 584-590.	5.0	10
67	Preparation of Submicron-sized Snowman-like Polystyrene Particles via Radiation-induced Seeded Emulsion Polymerization. Chemistry Letters, 2009, 38, 854-855.	0.7	10
68	Copolymerization of ethylene with unsaturated alcohols and methylmethacrylate using a silylated αâ€diimine nickel catalyst: Molecular modeling and photodegradation studies. Journal of Applied Polymer Science, 2013, 129, 1820-1832.	1.3	10
69	Synthesis of Anisotropic Polymer/Inorganic Particles via Asymmetric Swelling–Dissolving Process. Langmuir, 2013, 29, 1010-1016.	1.6	9
70	Facile fabrication of polymer-inorganic hybrid particles with various morphologies by combination of hydrolytic condensation process with radiation seeded emulsion polymerization. Colloid and Polymer Science, 2014, 292, 1171-1179.	1.0	9
71	Silver nanorods using HEC as a template by \hat{I}^3 -irradiation technique and absorption dose that changed their nanosize and morphology. Materials Letters, 2007, 61, 1801-1804.	1.3	8
72	Miniemulsion polymerization of styrene costabilized with polyurethane via 60Co \hat{l}^3 -ray radiation initiation. Colloid and Polymer Science, 2007, 285, 1093-1100.	1.0	8

#	Article	IF	Citations
73	Macroporous-mesoporous C-, S-, N-doped titania microspheres via the polyHIPE microspheres templates. Chinese Chemical Letters, 2021, 32, 1135-1138.	4.8	8
74	FORMATION OF MONODISPERSE POLYACRYLAMIDE PARTICLES BY DISPERSION POLYMERIZATION. I. SYNTHESIS AND POLYMERIZATION KINETICS. Journal of Macromolecular Science - Pure and Applied Chemistry, 2002, 39, 545-556.	1.2	7
75	Novel one-step route for synthesizing sub-micrometer PSt hollow spheres via redox interfacial-initiated method in inversed emulsion. Materials Letters, 2007, 61, 2818-2821.	1.3	7
76	Design and fabrication of hollow, magnetic and fluorescent CdS–magnetite–poly(styrene-co-methyl) Tj ETQ	q0 0 0 rgB	T /Overlock 1
77	High-Pressure Raman Study of [2.2]Paracyclophane. Journal of Physical Chemistry C, 2014, 118, 16028-16034.	1.5	7
78	A novel approach to preparing polystyrene/Fe3O4 multihollow microspheres with porous walls. Colloid and Polymer Science, 2016, 294, 1755-1763.	1.0	5
79	Preparation of Poly (methacrylic acid)/Polystyrene Composite Particles and Morphology Control. Materials Letters, 2007, 61, 4478-4481.	1.3	4
80	Synthesis of triangle hybrid particles by radiation-induced seeded emulsion polymerization based on polystyrene/SiO2 core–shell particles. Materials Letters, 2012, 79, 61-64.	1.3	4
81	Synthesis of worm-like superparamagnetic P(St-AA)@Fe3O4/SiO2 Janus composite particles. Colloid and Polymer Science, 2014, 292, 1395-1403.	1.0	4
82	Nitrone Mediated Coupling of Hyperbranched Polymer Radicals. Macromolecular Chemistry and Physics, 2017, 218, 1700069.	1.1	4
83	Symmetric Amphiphilic Molecules with Hydroxylâ€Cinnamicâ€Acid Dimer Cores: Photoâ€alterable Aggregation and Thermal Sensitivity. Journal of Surfactants and Detergents, 2017, 20, 1105-1113.	1.0	3
84	Radiation miniemulsion polymerization system with HTPB or its derivative as the costabilizer. Colloid and Polymer Science, 2008, 286, 1039-1047.	1.0	2
85	Fabrication and Morphology of Spongelike Polymer Material Based on Cross-Linked Sulfonated Polystyrene Particles. Langmuir, 2012, 28, 5498-5502.	1.6	2
86	A facile approach to superparamagnetic porous carbons and its high capability for the removal of pollutants in water. Materials Letters, 2013, 92, 14-16.	1.3	2
87	Improving the electrical and mechanical performances of embedded capacitance materials by introducing tungsten disulfide nanoflakes into the dielectric layer. Journal of Materials Science: Materials in Electronics, 2020, 31, 7889-7897.	1.1	2
88	Fluorineâ€free superhydrophobic meshes decorated with porous microspheres for highly efficient oil–water separation. Journal of Applied Polymer Science, 2022, 139, .	1.3	1
89	Design and Fabrication of Multifunctional CdS/Magnetite/Poly(styrene-co-methyl methacrylate) Microspheres: Magnetic, Fluorescent and Hollow. Journal of Scientific Conference Proceedings, 2009, 1, 200-201.	0.1	0