
Alexandre Maller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6255287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Purification and Partial Characterization of an Exo-polygalacturonase from Paecilomyces variotii Liquid Cultures. Applied Biochemistry and Biotechnology, 2010, 160, 1496-1507.	1.4	34
2	Properties of a purified thermostable glucoamylase from Aspergillus niveus. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1439-1446.	1.4	32
3	Biotechnological Potential of Agro-Industrial Wastes as a Carbon Source to Thermostable Polygalacturonase Production in <i>Aspergillus niveus</i> . Enzyme Research, 2011, 2011, 1-6.	1.8	32
4	Biochemical properties of glycosylation and characterization of a histidine acid phosphatase (phytase) expressed in Pichia pastoris. Protein Expression and Purification, 2014, 99, 43-49.	0.6	26
5	Spike protein of SARS-CoV-2 variants: a brief review and practical implications. Brazilian Journal of Microbiology, 2022, 53, 1133-1157.	0.8	22
6	Purification and biochemical characterization of a novel α-glucosidase from Aspergillus niveus. Antonie Van Leeuwenhoek, 2009, 96, 569-578.	0.7	21
7	Purification, partial characterization, and covalent immobilization–stabilization of an extracellular α-amylase from Aspergillus niveus. Folia Microbiologica, 2013, 58, 495-502.	1.1	16
8	Biotechnological potential of alternative carbon sources for production of pectinases by Rhizopus microsporus var. rhizopodiformis. Brazilian Archives of Biology and Technology, 2011, 54, 141-148.	0.5	15
9	Functional properties of a manganese-activated exo-polygalacturonase produced by a thermotolerant fungus Aspergillus niveus. Folia Microbiologica, 2013, 58, 615-621.	1.1	14
10	Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors. Chemical Papers, 2015, 69, .	1.0	14
11	Biotechnological potential of an exoâ€polygalacturonase of the new strain <i>Penicillium janthinellum</i> VI2R3M: biochemical characterization and clarification of fruit juices. Journal of Applied Microbiology, 2019, 127, 1706-1715.	1.4	14
12	Increase of the phytase production by <i>Aspergillus japonicus</i> and its biocatalyst potential on chicken feed treatment. Journal of Basic Microbiology, 2014, 54, S152-60.	1.8	13
13	Improvement in the bleaching of kraft pulp with xylanase from <i>Penicillium crustosum</i> FP 11 isolated from the Atlantic forest. Biocatalysis and Biotransformation, 2016, 34, 119-127.	1.1	13
14	Analysis of the xynB5 gene encoding a multifunctional GH3-BglX β-glucosidase-β-xylosidase-α-arabinosidase member in Caulobacter crescentus. Antonie Van Leeuwenhoek, 2015, 108, 993-1007.	0.7	12
15	The fungal metabolite eugenitin as additive for Aspergillus niveus glucoamylase activation. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 156-161.	1.8	11
16	Use of Cassava Peel as Carbon Source for Production of Amylolytic Enzymes by Aspergillus niveus. International Journal of Food Engineering, 2009, 5, .	0.7	10
17	Cloning, expression and characterization of C. crescentus xynA2 gene and application of Xylanase II in the deconstruction of plant biomass. Molecular Biology Reports, 2020, 47, 4427-4438.	1.0	9
18	Recombinant cellulase of Caulobacter crescentus: potential applications for biofuels and textile industries. Cellulose, 2021, 28, 2813-2832.	2.4	9

ALEXANDRE MALLER

#	Article	IF	CITATIONS
19	Tunicamycin inhibition of N-glycosylation of α-glucosidase from Aspergillus niveus: partial influence on biochemical properties. Biotechnology Letters, 2010, 32, 1449-1455.	1.1	8
20	Evidence of high production levels of thermostable dextrinizing and saccharogenic amylases by Aspergillus niveus. African Journal of Biotechnology, 2013, 12, 1874-1881.	0.3	8
21	Neosartorya glabra polygalacturonase produced from fruit peels as inducers has the potential for application in passion fruit and apple juices. Brazilian Journal of Food Technology, 2017, 20, .	0.8	7
22	Proteomic profile of hemolymph and detection of induced antimicrobial peptides in response to microbial challenge in Diatraea saccharalis (Lepidoptera: Crambidae). Biochemical and Biophysical Research Communications, 2016, 473, 511-516.	1.0	6
23	Production, immobilization and application of invertase from new wild strain Cunninghamella echinulata PA3S12MM. Journal of Applied Microbiology, 2022, 132, 2832-2843.	1.4	6
24	Upregulation of the clpB gene in response to heat shock and beta-lactam antibiotics in Acinetobacter baumannii. Molecular Biology Reports, 2020, 47, 1499-1505.	1.0	5
25	Caulobacter crescentus β-Xylosidase II Is Highly Tolerant to Inhibitors Present in Fermentative Processes Involving Lignocellulosic Biomass. Bioenergy Research, 2020, 13, 301-313.	2.2	5
26	Production of Hemicellulolytic Enzymes by a Novel Trichoderma koningiopsis 2012A1M and Its Application in the Saccharification of Barley Bagasse. Waste and Biomass Valorization, 2021, 12, 5949-5958.	1.8	5
27	<i>Cunninghamella echinulata</i> PA3S12MM invertase: Biochemical characterization of a promiscuous enzyme. Journal of Food Biochemistry, 2021, 45, e13654.	1.2	4
28	Endo-xylanase GH11 activation by the fungal metabolite eugenitin. Biotechnology Letters, 2012, 34, 1487-1492.	1.1	3
29	Fermentation pH in stirred tank and air-lift bioreactors affects phytase secretion byAspergillus japonicusdifferently but not the particle size. Biocatalysis and Biotransformation, 2014, 32, 39-44.	1.1	3
30	Biochemical effect of a histidine phosphatase acid (phytase) of Aspergillus japonicus var. Saito on performance and bony characteristics of broiler. SpringerPlus, 2016, 5, 1418.	1.2	3
31	Experimental Design for Optimization of β-Xylosidase Production by A. fumigatus Isolated from the Atlantic Forest (Brazil). Journal of Advances in Biology & Biotechnology, 0, , 1-16.	0.2	3
32	Pectinases Produced by Microorganisms. , 2013, , .		2
33	Enhance of Cellulase Production and Biomass Degradation by Transformation of the Trichoderma reesei RUT-C30â^†zface1 Strain. Brazilian Archives of Biology and Technology, 0, 63, .	0.5	2
34	Biochemical Characteristics of Penicillium crustosum FP 11 Xylanase II and an Assessment of the Properties of Xylanases Produced by the Genus Penicillium. Annual Research & Review in Biology, 0, , 64-75.	0.4	2
35	Research Article Bioprospecting and enzymatic potential of filamentous fungi from the Bela Vista Biological Refuge in Itaipu, Brazil. Genetics and Molecular Research, 2019, 18, .	0.3	1
36	SCREENING OF FILAMENTOUS FUNGI FROM THE ATLANTIC FOREST BIOME PRODUCING ENZYMES OF THE PECTINOLYTIC COMPLEX. Brazilian Journal of Development, 2020, 6, 57580-57585.	0.0	1

#	Article	IF	CITATIONS
37	A THERMOSTABLE XYLANASE FROM A NEW STRAIN OF ASPERGILLUS FUMIGATUS PRESENTS HIGH ABILITY TO HYDROLYZE HEMICELLULOSE FROM CORN STRAW / UMA XILANASE TERMOESTÃVEL DE UMA NOVA ESTIRPE DE ASPERGILLUS FUMIGATUS APRESENTA ELEVADA CAPACIDADE DE HIDROLISAR HEMICELULOSE A PARTIR DE PALHA DE MILHO. Brazilian Journal of Development, 2020, 6, 69054-69077.	0.0	1
38	Gel Electrophoresis for Investigating Enzymes with Biotechnological Application. , 0, , .		0
39	Ação das enzimas celulase, invertase, pectinase e xilanase na produção de vinhos – uma revisão sistemática da literatura / Activity of celulase, invertase, pectinase and xylanase enzymes in wine production - a systematic literature review. Brazilian Journal of Health Review, 2021, 4, 19296-19317.	0.0	0
40	AVALIAÇÃO DA ATIVIDADE XILANASE DE CULTIVOS DE FUNGOS MESÓFILO E TERMÓFILO UTILIZANDO RESÃÐUOS E SUBPRODUTOS AGRÃCOLAS. Brazilian Journal of Development, 2020, 6, 61349-61356.	0.0	0
41	Structural and Gene Characterization of a New Antifungal Peptide Obtained from Penicillium crustosum FP11 Strain. International Journal of Biochemistry Research & Review, 0, , 50-60.	0.1	0