List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6254538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chemical Letters, 2023, 34, 107518.	4.8	124
2	Leveraging macrophages for cancer theranostics. Advanced Drug Delivery Reviews, 2022, 183, 114136.	6.6	21
3	Physical & Chemical Microwave Ablation (MWA) Enabled by Nonionic MWA Nanosensitizers Repress Incomplete MWA-Arised Liver Tumor Recurrence. ACS Nano, 2022, 16, 5704-5718.	7.3	27
4	Light responsive nucleic acid for biomedical application. Exploration, 2022, 2, .	5.4	19
5	Osteopontin targeted theranostic nanoprobes for laser-induced synergistic regression of vulnerable atherosclerotic plaques. Acta Pharmaceutica Sinica B, 2022, 12, 2014-2028.	5.7	16
6	Functionalized Macrophage Exosomes with Panobinostat and PPM1Dâ€siRNA for Diffuse Intrinsic Pontine Gliomas Therapy. Advanced Science, 2022, 9, e2200353.	5.6	29
7	Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. Journal of Nanobiotechnology, 2022, 20, 236.	4.2	9
8	Structure transformable nanoparticles for photoacoustic imaging-guided photothermal ablation of tumors via enzyme-induced multistage delivery. Chemical Engineering Journal, 2021, 421, 127747.	6.6	8
9	Applications and regulatory of nanotechnologyâ€based innovative <i>in vitro</i> diagnostics. View, 2021, 2, 20200091.	2.7	11
10	Exploiting the acquired vulnerability of cisplatin-resistant tumors with a hypoxia-amplifying DNA repair–inhibiting (HYDRI) nanomedicine. Science Advances, 2021, 7, .	4.7	50
11	Inside Back Cover: Applications and regulatory of nanotechnologyâ€based innovative in vitro diagnostics (View 2/2021). View, 2021, 2, e117.	2.7	Ο
12	Identification of SARS-CoV-2-against aptamer with high neutralization activity by blocking the RBD domain of spike protein 1. Signal Transduction and Targeted Therapy, 2021, 6, 227.	7.1	56
13	Practicable Applications of Aggregationâ€Induced Emission with Biomedical Perspective. Advanced Healthcare Materials, 2021, 10, e2100945.	3.9	10
14	Biomimetic carbon nanotubes for neurological disease therapeutics as inherent medication. Acta Pharmaceutica Sinica B, 2020, 10, 239-248.	5.7	65
15	Singleâ€Photomolecular Nanotheranostics for Synergetic Nearâ€Infrared Fluorescence and Photoacoustic Imagingâ€Guided Highly Effective Photothermal Ablation. Small, 2020, 16, e2002672.	5.2	23
16	Stimuli-responsive polymeric nanomaterials for rheumatoid arthritis therapy. Biophysics Reports, 2020, 6, 193-210.	0.2	10
17	<i>In Vivo</i> Real-Time Pharmaceutical Evaluations of Near-Infrared II Fluorescent Nanomedicine Bound Polyethylene Glycol Ligands for Tumor Photothermal Ablation. ACS Nano, 2020, 14, 13681-13690.	7.3	38
18	ROS-Activatable siRNA-Engineered Polyplex for NIR-Triggered Synergistic Cancer Treatment. ACS Applied Materials & Interfaces, 2020, 12, 32289-32300.	4.0	49

#	Article	IF	CITATIONS
19	Mammalian Pericardiumâ€Based Bioprosthetic Materials in Xenotransplantation and Tissue Engineering. Biotechnology Journal, 2020, 15, e1900334.	1.8	17
20	Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Advances, 2019, 9, 24539-24559.	1.7	247
21	Magnetic Reactive Oxygen Species Nanoreactor for Switchable Magnetic Resonance Imaging Guided Cancer Therapy Based on pH-Sensitive Fe ₅ C ₂ @Fe ₃ O ₄ Nanoparticles. ACS Nano, 2019, 13, 10002-10014.	7.3	138
22	<i>In Vivo</i> Quantitative Photoacoustic Diagnosis of Gastric and Intestinal Dysfunctions with a Broad pH-Responsive Sensor. ACS Nano, 2019, 13, 9561-9570.	7.3	68
23	Biodegradable π-Conjugated Oligomer Nanoparticles with High Photothermal Conversion Efficiency for Cancer Theranostics. ACS Nano, 2019, 13, 12901-12911.	7.3	191
24	Engineered nanoparticles circumvent the adaptive treatment tolerance to immune-checkpoint blockade therapy. Science China Chemistry, 2019, 62, 1557-1560.	4.2	5
25	Thermo-responsive triple-function nanotransporter for efficient chemo-photothermal therapy of multidrug-resistant bacterial infection. Nature Communications, 2019, 10, 4336.	5.8	231
26	Secreted Protein Acidic and Rich in Cysteine Mediated Biomimetic Delivery of Methotrexate by Albumin-Based Nanomedicines for Rheumatoid Arthritis Therapy. ACS Nano, 2019, 13, 5036-5048.	7.3	122
27	Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. Biophysics Reports, 2019, 5, 19-30.	0.2	52
28	Move to Nanoâ€Arthrology: Targeted Stimuliâ€Responsive Nanomedicines Combat Adaptive Treatment Tolerance (ATT) of Rheumatoid Arthritis. Biotechnology Journal, 2019, 14, e1800024.	1.8	17
29	Core–Satellite Nanomedicines for <i>in Vivo</i> Real-Time Monitoring of Enzyme-Activatable Drug Release by Fluorescence and Photoacoustic Dual-Modal Imaging. ACS Nano, 2019, 13, 176-186.	7.3	67
30	Lightâ€Triggered Retention and Cascaded Therapy of Albuminâ€Based Theranostic Nanomedicines to Alleviate Tumor Adaptive Treatment Tolerance. Advanced Functional Materials, 2018, 28, 1707291.	7.8	68
31	Perfluorocarbon-based nanomedicine: emerging strategy for diagnosis and treatment of diseases. MRS Communications, 2018, 8, 303-313.	0.8	23
32	Poly(Lactide-Co-Glycolide)-Monomethoxy-Poly-(Polyethylene Glycol) Nanoparticles Loaded with Melatonin Protect Adipose-Derived Stem Cells Transplanted in Infarcted Heart Tissue. Stem Cells, 2018, 36, 540-550.	1.4	44
33	Renal-clearable quaternary chalcogenide nanocrystal for photoacoustic/magnetic resonance imaging guided tumor photothermal therapy. Biomaterials, 2018, 159, 108-118.	5.7	42
34	Laser-Induced Transformable BiS@HSA/DTX Multiple Nanorods for Photoacoustic/Computed Tomography Dual-Modal Imaging Guided Photothermal/Chemo Combinatorial Anticancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 41167-41177.	4.0	16
35	Fluorinated Oligoethylenimine Nanoassemblies for Efficient siRNA-Mediated Gene Silencing in Serum-Containing Media by Effective Endosomal Escape. Nano Letters, 2018, 18, 6301-6311.	4.5	61
36	Fluorine Meets Amine: Reducing Microenvironment-Induced Amino-Activatable Nanoprobes for ¹⁹ F-Magnetic Resonance Imaging of Biothiols. ACS Applied Materials & Interfaces, 2018, 10. 18532-18542.	4.0	34

#	Article	IF	CITATIONS
37	Precise theranostic nanomedicines for inhibiting vulnerable atherosclerotic plaque progression through regulation of vascular smooth muscle cell phenotype switching. Theranostics, 2018, 8, 3693-3706.	4.6	44
38	Biocompatible semiconducting polymer nanoparticles as robust photoacoustic and photothermal agents revealing the effects of chemical structure on high photothermal conversion efficiency. Biomaterials, 2018, 181, 92-102.	5.7	71
39	NVP-BEZ235/Chlorin-e6 co-loaded nanoparticles ablate breast cancer by biochemical and photodynamic synergistic effects. Nano Research, 2018, 11, 4846-4858.	5.8	6
40	Biomimetic O2-Evolving metal-organic framework nanoplatform for highly efficient photodynamic therapy against hypoxic tumor. Biomaterials, 2018, 178, 83-94.	5.7	165
41	Enhanced Fluorescence ELISA Based on HAT Triggering Fluorescence "Turn-on―with Enzyme–Antibody Dual Labeled AuNP Probes for Ultrasensitive Detection of AFP and HBsAg. ACS Applied Materials & Interfaces, 2017, 9, 9369-9377.	4.0	80
42	MRI-guided and ultrasound-triggered release of NO by advanced nanomedicine. Nanoscale, 2017, 9, 3637-3645.	2.8	124
43	ICAM-1-Targeted Liposomes Loaded with Liver X Receptor Agonists Suppress PDGF-Induced Proliferation of Vascular Smooth Muscle Cells. Nanoscale Research Letters, 2017, 12, 322.	3.1	22
44	Transferrin-Dressed Virus-like Ternary Nanoparticles with Aggregation-Induced Emission for Targeted Delivery and Rapid Cytosolic Release of siRNA. ACS Applied Materials & Interfaces, 2017, 9, 16006-16014.	4.0	24
45	Terrylenediimide-Based Intrinsic Theranostic Nanomedicines with High Photothermal Conversion Efficiency for Photoacoustic Imaging-Guided Cancer Therapy. ACS Nano, 2017, 11, 3797-3805.	7.3	243
46	Green Synthesis of Subâ€10 nm Gadoliniumâ€Based Nanoparticles for Sparkling Kidneys, Tumor, and Angiogenesis of Tumorâ€Bearing Mice in Magnetic Resonance Imaging. Advanced Healthcare Materials, 2017, 6, 1600865.	3.9	18
47	Carrier-free, self-assembled pure drug nanorods composed of 10-hydroxycamptothecin and chlorin e6 for combinatorial chemo-photodynamic antitumor therapy in vivo. Nanoscale, 2017, 9, 14347-14356.	2.8	103
48	Throughâ€Bond Energy Transfer Cassette with Dualâ€Stokes Shifts for "Double Checked―Cell Imaging. Advanced Science, 2017, 4, 1700229.	5.6	26
49	Protein/peptide-templated biomimetic synthesis of inorganic nanoparticles for biomedical applications. Journal of Materials Chemistry B, 2017, 5, 401-417.	2.9	132
50	Nanotechnology-based strategies for treatment of ocular disease. Acta Pharmaceutica Sinica B, 2017, 7, 281-291.	5.7	257
51	Co-Delivery of Itraconazole and Docetaxel by Core/Shell Lipid Nanocells for Systemic Antiangiogenesis and Tumor Growth Inhibition. Journal of Biomedical Nanotechnology, 2017, 13, 1398-1412.	0.5	7
52	A Protein–Polymer Bioconjugate-Coated Upconversion Nanosystem for Simultaneous Tumor Cell Imaging, Photodynamic Therapy, and Chemotherapy. ACS Applied Materials & Interfaces, 2016, 8, 32688-32698.	4.0	54
53	Zinc Oxide Nanoparticles as Adjuvant To Facilitate Doxorubicin Intracellular Accumulation and Visualize pH-Responsive Release for Overcoming Drug Resistance. Molecular Pharmaceutics, 2016, 13, 1723-1730.	2.3	61
54	One-step gene delivery into the cytoplasm in a fusion-dependent manner based on a new membrane fusogenic lipid. Chemical Communications, 2016, 52, 7406-7408.	2.2	9

#	Article	IF	CITATIONS
55	Reverse Fluorescence Enhancement and Colorimetric Bimodal Signal Readout Immunochromatography Test Strip for Ultrasensitive Large-Scale Screening and Postoperative Monitoring. ACS Applied Materials & Interfaces, 2016, 8, 22963-22970.	4.0	52
56	Near-Infrared Emission CulnS/ZnS Quantum Dots: All-in-One Theranostic Nanomedicines with Intrinsic Fluorescence/Photoacoustic Imaging for Tumor Phototherapy. ACS Nano, 2016, 10, 9637-9645.	7.3	216
57	Albumin-Bioinspired Gd:CuS Nanotheranostic Agent for <i>In Vivo</i> Photoacoustic/Magnetic Resonance Imaging-Guided Tumor-Targeted Photothermal Therapy. ACS Nano, 2016, 10, 10245-10257.	7.3	361
58	Intrinsically Radioactive [⁶⁴ Cu]CuInS/ZnS Quantum Dots for PET and Optical Imaging: Improved Radiochemical Stability and Controllable Cerenkov Luminescence. ACS Nano, 2015, 9, 488-495.	7.3	143
59	pHe-Induced Charge-Reversible NIR Fluorescence Nanoprobe for Tumor-Specific Imaging. ACS Applied Materials & Interfaces, 2015, 7, 7566-7575.	4.0	23
60	Facile Synthesis of Gd–Cu–In–S/ZnS Bimodal Quantum Dots with Optimized Properties for Tumor Targeted Fluorescence/MR <i>In Vivo</i> Imaging. ACS Applied Materials & Interfaces, 2015, 7, 18759-18768.	4.0	73
61	Facile Construction of Near Infrared Fluorescence Nanoprobe with Amphiphilic Protein-Polymer Bioconjugate for Targeted Cell Imaging. ACS Applied Materials & Interfaces, 2015, 7, 18997-19005.	4.0	42
62	Rapid and Quantitative Detection of Prostate Specific Antigen with a Quantum Dot Nanobeads-Based Immunochromatography Test Strip. ACS Applied Materials & Interfaces, 2014, 6, 6406-6414.	4.0	125
63	Color-tunable Gd-Zn-Cu-In-S/ZnS quantum dots for dual modality magnetic resonance and fluorescence imaging. Nano Research, 2014, 7, 1581-1591.	5.8	68
64	Synthesis of Zn-Cu-In-S/ZnS Core/Shell Quantum Dots with Inhibited Blue-Shift Photoluminescence and Applications for Tumor Targeted Bioimaging. Theranostics, 2013, 3, 99-108.	4.6	105
65	One-pot synthesis of hydrophilic ZnCuInS/ZnS quantum dots for in vivo imaging. RSC Advances, 2013, 3, 9470.	1.7	37