Yasuhito Arai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/625438/publications.pdf

Version: 2024-02-01

66 7,656 34
papers citations h-in

34 65
h-index g-index

67 67 all docs citations

67 times ranked 11566 citing authors

#	Article	IF	Citations
1	Identification of novel SSX1 fusions in synovial sarcoma. Modern Pathology, 2022, 35, 228-239.	5.5	15
2	Comprehensive Genomic Profiling of Neuroendocrine Carcinomas of the Gastrointestinal System. Cancer Discovery, 2022, 12, 692-711.	9.4	58
3	Co-expression of ERG and CD31 in a subset of CIC-rearranged sarcoma: a potential diagnostic pitfall. Modern Pathology, 2022, 35, 1439-1448.	5. 5	10
4	Diffusely infiltrating glioma with CREBBP–BCORL1 fusion showing overexpression of not only BCORL1 but BCOR: A case report. Brain Tumor Pathology, 2022, 39, 171-178.	1.7	5
5	Ependymoma with C11orf95-MAML2 fusion: presenting with granular cell and ganglion cell features. Brain Tumor Pathology, 2021, 38, 64-70.	1.7	11
6	E74-Like Factor 3 Is a Key Regulator of Epithelial Integrity and Immune Response Genes in Biliary Tract Cancer. Cancer Research, 2021, 81, 489-500.	0.9	16
7	Molecular detection and clinicopathological characteristics of advanced/recurrent biliary tract carcinomas harboring the FGFR2 rearrangements: a prospective observational study (PRELUDE Study). Journal of Gastroenterology, 2021, 56, 250-260.	5.1	31
8	Vaginal Transmission of Cancer from Mothers with Cervical Cancer to Infants. New England Journal of Medicine, 2021, 384, 42-50.	27.0	40
9	Ependymomaâ€like tumor with mesenchymal differentiation harboring <i>C11orf95</i> â€xi>NCOA1/i>/ <i>2</i> or â€xi>RELA fusion: A hitherto unclassified tumor related to ependymoma. Brain Pathology, 2021, 31, e12943.	4.1	16
10	Frequent breakpoints of focal deletion and uniparental disomy in $22q11.1$ or 11.2 segmental duplication region reveal distinct tumorigenesis in rhabdoid tumor of the kidney. Genes Chromosomes and Cancer, 2021, 60, 546-558.	2.8	0
11	Single-cell DNA and RNA sequencing reveals the dynamics of intra-tumor heterogeneity in a colorectal cancer model. BMC Biology, 2021, 19, 207.	3 . 8	18
12	Sarcoma with MGA–NUTM1 fusion in the lung: an emerging entity. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2020, 476, 317-322.	2.8	12
13	Expanding the clinicopathologic and molecular spectrum of <i>BCOR</i> â€associated sarcomas in adults. Histopathology, 2020, 76, 509-520.	2.9	38
14	The potential application of PD-1 blockade therapy for early-stage biliary tract cancer. International Immunology, 2020, 32, 273-281.	4.0	10
15	Primary spinal intramedullary Ewing-like sarcoma harboring CIC-DUX4 translocation: a similar cytological appearance as its soft tissue counterpart but no lobulation in association with desmoplastic stroma. Brain Tumor Pathology, 2020, 37, 111-117.	1.7	13
16	<i>KMT2A</i> (<i>MLL</i>) fusions in aggressive sarcomas in young adults. Histopathology, 2019, 75, 508-516.	2.9	22
17	Combined Genetic and Chromosomal Characterization of Wilms Tumors Identifies Chromosome 12 Gain as a Potential New Marker Predicting a Favorable Outcome. Neoplasia, 2019, 21, 117-131.	5.3	9
18	Epigenetic landscape influences the liver cancer genome architecture. Nature Communications, 2018, 9, 1643.	12.8	39

#	Article	IF	CITATIONS
19	Molecular genomic landscapes of hepatobiliary cancer. Cancer Science, 2018, 109, 1282-1291.	3.9	43
20	A computational tool to detect DNA alterations tailored to formalin-fixed paraffin-embedded samples in cancer clinical sequencing. Genome Medicine, 2018, 10, 44.	8.2	37
21	Integrated genetic and epigenetic analysis of myxofibrosarcoma. Nature Communications, 2018, 9, 2765.	12.8	54
22	NUTM2A-CIC fusion small round cell sarcoma: a genetically distinct variant of CIC-rearranged sarcoma. Human Pathology, 2017, 65, 225-230.	2.0	56
23	<i><scp>CIC</scp></i> breakâ€apart fluorescence <i>inâ€situ</i> hybridization misses a subset of <i><scp>CIC</scp>–<scp>DUX</scp>4</i> sarcomas: a clinicopathological and molecular study. Histopathology, 2017, 71, 461-469.	2.9	56
24	Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma. Cancer Discovery, 2017, 7, 1116-1135.	9.4	637
25	Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nature Genetics, 2016, 48, 500-509.	21.4	596
26	Genomic Sequencing Identifies ELF3 as a Driver of Ampullary Carcinoma. Cancer Cell, 2016, 29, 229-240.	16.8	147
27	Heat Shock Protein 90 Is a Potential Therapeutic Target in Cholangiocarcinoma. Molecular Cancer Therapeutics, 2015, 14, 1985-1993.	4.1	24
28	Genomic spectra of biliary tract cancer. Nature Genetics, 2015, 47, 1003-1010.	21.4	907
29	A Novel CIC-FOXO4 Gene Fusion in Undifferentiated Small Round Cell Sarcoma. American Journal of Surgical Pathology, 2014, 38, 1571-1576.	3.7	147
30	Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology, 2014, 59, 1427-1434.	7.3	420
31	Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nature Genetics, 2014, 46, 1267-1273.	21.4	655
32	Unique mutation portraits and frequent <i>COL2A1</i> gene alteration in chondrosarcoma. Genome Research, 2014, 24, 1411-1420.	5.5	85
33	Immunohistochemical detection of ROS1 is useful for identifying ROS1 rearrangements in lung cancers. Modern Pathology, 2014, 27, 711-720.	5.5	137
34	Meiosis error and subsequent genetic and epigenetic alterations invoke the malignant transformation of germ cell tumor. Genes Chromosomes and Cancer, 2013, 52, 274-286.	2.8	8
35	ROS1-Rearranged Lung Cancer. American Journal of Surgical Pathology, 2013, 37, 554-562.	3.7	155
36	Mouse Model for ROS1-Rearranged Lung Cancer. PLoS ONE, 2013, 8, e56010.	2.5	54

3

#	Article	IF	Citations
37	Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nature Genetics, 2012, 44, 760-764.	21.4	781
38	KIF5B-RET fusions in lung adenocarcinoma. Nature Medicine, 2012, 18, 375-377.	30.7	753
39	Methylation of the <i>RASSF1A</i> promoter is predictive of poor outcome among patients with Wilms tumor. Pediatric Blood and Cancer, 2012, 59, 499-505.	1.5	19
40	Different incidences of epigenetic but not genetic abnormalities between <scp>W</scp> ilms tumors in <scp>J</scp> apanese and <scp>C</scp> aucasian children. Cancer Science, 2012, 103, 1129-1135.	3.9	23
41	High-resolution characterization of a hepatocellular carcinoma genome. Nature Genetics, 2011, 43, 464-469.	21.4	265
42	Association of germline or somatic <i>TP53</i> missense mutation with oncogene amplification in tumors developed in patients with Liâ€Fraumeni or Liâ€Fraumeniâ€ike syndrome. Genes Chromosomes and Cancer, 2011, 50, 535-545.	2.8	15
43	Genomeâ€wide analysis of allelic imbalances reveals 4q deletions as a poor prognostic factor and ⟨i>MDM4⟨ i> amplification at 1q32.1 in hepatoblastoma. Genes Chromosomes and Cancer, 2010, 49, 596-609.	2.8	42
44	Resequencing and copy number analysis of the human tyrosine kinase gene family in poorly differentiated gastric cancer. Carcinogenesis, 2009, 30, 1857-1864.	2.8	38
45	Krüppelâ€like factor 12 plays a significant role in poorly differentiated gastric cancer progression. International Journal of Cancer, 2009, 125, 1859-1867.	5.1	64
46	Alteration of enhancer of polycomb 1 at 10p11.2 is one of the genetic events leading to development of adult Tâ€cell leukemia/lymphoma. Genes Chromosomes and Cancer, 2009, 48, 768-776.	2.8	25
47	Two candidate tumor suppressor genes, <i>MEOX2</i> and <i>SOSTDC1</i> , identified in a 7p21 homozygous deletion region in a Wilms tumor. Genes Chromosomes and Cancer, 2009, 48, 1037-1050.	2.8	31
48	Yolk sac tumor but not seminoma or teratoma is associated with abnormal epigenetic reprogramming pathway and shows frequent hypermethylation of various tumor suppressor genes. Cancer Science, 2009, 100, 698-708.	3.9	30
49	Resequencing Analysis of the Human Tyrosine Kinase Gene Family in Pancreatic Cancer. Pancreas, 2009, 38, e200-e206.	1.1	18
50	Duplication of paternal <i>IGF2</i> or loss of maternal <i>IGF2</i> imprinting occurs in half of Wilms tumors with various structural <i>WT1</i> abnormalities. Genes Chromosomes and Cancer, 2008, 47, 712-727.	2.8	45
51	Loss of imprinting of IGF2 correlates with hypermethylation of the H19 differentially methylated region in hepatoblastoma. British Journal of Cancer, 2008, 99, 1891-1899.	6.4	92
52	Clonal and Parallel Evolution of Primary Lung Cancers and Their Metastases Revealed by Molecular Dissection of Cancer Cells. Clinical Cancer Research, 2007, 13, 111-120.	7.0	34
53	Clonality and heterogeneity of pulmonary blastoma from the viewpoint of genetic alterations: A case report. Lung Cancer, 2007, 57, 103-108.	2.0	24
54	Homozygous deletion scanning of the lung cancer genome at a 100â€kb resolution. Genes Chromosomes and Cancer, 2007, 46, 1000-1010.	2.8	63

#	Article	IF	CITATIONS
55	Identification of chromosome arm 9p as the most frequent target of homozygous deletions in lung cancer. Genes Chromosomes and Cancer, 2005, 44, 405-414.	2.8	81
56	Automated Steering Control Design by Visual Feedback Approach-System Identification and Control Experiments with a Radio-Controlled Car IEEJ Transactions on Industry Applications, 2003, 123, 628-633.	0.2	4
57	A BAC-Based STS-Content Map Spanning a 35-Mb Region of Human Chromosome 1p35–p36. Genomics, 2001, 74, 55-70.	2.9	153
58	Involvement of the NUP98 Gene in a Chromosomal Translocation $t(11;20)(p15;q11.2)$ in a Patient With Acute Monocytic Leukemia (FAB-M5b). International Journal of Hematology, 2001, 74, 53-57.	1.6	4
59	Fusion of the Nucleoporin Gene, NUP98, and the Putative RNA Helicase Gene, DDX10, by Inversion 11 (p15q22) Chromosome Translocation in a Patient with Etoposide-related Myelodysplastic Syndrome Internal Medicine, 2000, 39, 412-415.	0.7	22
60	Generation of the NUP98-HOXD13 fusion transcript by a rare translocation, $t(2;11)(q31;p15)$, in a case of infant leukaemia. British Journal of Haematology, 2000, 110, 210-213.	2. 5	23
61	A 2-Mb Sequence-Ready Contig Map and a Novel Immunoglobulin Superfamily Gene IGSF4 in the LOH Region of Chromosome 11q23.2. Genomics, 1999, 62, 139-146.	2.9	108
62	The inv(11)(p15q22) Chromosome Translocation of De Novo and Therapy-Related Myeloid Malignancies Results in Fusion of the Nucleoporin Gene, NUP98, With the Putative RNA Helicase Gene, DDX10. Blood, 1997, 89, 3936-3944.	1.4	152
63	A complete Not I restriction map covering the entire long arm of human chromosome 11. Genes To Cells, 1997, 2, 345-357.	1.2	12
64	Inversion of chromosome 11, inv(11)(p15q22), as a recurring chromosomal aberration associated with de novo and secondary myeloid malignancies: Identification of a P1 clone spanning the $11q22$ breakpoint. Genes Chromosomes and Cancer, 1997, 19, 150-155.	2.8	19
65	A Yeast Artificial Chromosome Contig andNotl Restriction Map That Spans the Tumor Suppressor Gene(s) Locus, 11q22.2–q23.3. Genomics, 1996, 35, 196-206.	2.9	43
66	A Notl restriction map of the entire long arm of human chromosome 21. Nature Genetics, 1993, 4, 361-366.	21.4	90