Han Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6254118/publications.pdf

Version: 2024-02-01

		257101	476904
56	2,989	24	29
papers	citations	h-index	g-index
57 all docs	57 docs citations	57 times ranked	2454 citing authors

#	Article	IF	Citations
1	Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman Filter for Indoor Localization. Sensors, 2015, 15, 715-732.	2.1	321
2	A Robust Indoor Positioning System Based on the Procrustes Analysis and Weighted Extreme Learning Machine. IEEE Transactions on Wireless Communications, 2016, 15, 1252-1266.	6.1	159
3	WinIPS: WiFi-Based Non-Intrusive Indoor Positioning System With Online Radio Map Construction and Adaptation. IEEE Transactions on Wireless Communications, 2017, 16, 8118-8130.	6.1	147
4	Device-Free Occupant Activity Sensing Using WiFi-Enabled IoT Devices for Smart Homes. IEEE Internet of Things Journal, 2018, 5, 3991-4002.	5.5	134
5	Device-free occupancy detection and crowd counting in smart buildings with WiFi-enabled IoT. Energy and Buildings, 2018, 174, 309-322.	3.1	132
6	A Fast and Precise Indoor Localization Algorithm Based on an Online Sequential Extreme Learning Machine. Sensors, 2015, 15, 1804-1824.	2.1	122
7	WinLight: A WiFi-based occupancy-driven lighting control system for smart building. Energy and Buildings, 2018, 158, 924-938.	3.1	121
8	WiFi Fingerprinting Indoor Localization Using Local Feature-Based Deep LSTM. IEEE Systems Journal, 2020, 14, 3001-3010.	2.9	102
9	Robust Extreme Learning Machine With its Application to Indoor Positioning. IEEE Transactions on Cybernetics, 2016, 46, 194-205.	6.2	97
10	Accurate indoor localization and tracking using mobile phone inertial sensors, WiFi and iBeacon. , 2017, , .		93
11	BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service. Sensors, 2016, 16, 268.	2.1	90
12	Learning Gestures From WiFi: A Siamese Recurrent Convolutional Architecture. IEEE Internet of Things Journal, 2019, 6, 10763-10772.	5 . 5	83
13	Non-intrusive occupancy sensing in commercial buildings. Energy and Buildings, 2017, 154, 633-643.	3.1	82
14	Towards occupant activity driven smart buildings via WiFi-enabled IoT devices and deep learning. Energy and Buildings, 2018, 177, 12-22.	3.1	78
15	FreeCount: Device-Free Crowd Counting with Commodity WiFi. , 2017, , .		63
16	DeepSense: Device-Free Human Activity Recognition via Autoencoder Long-Term Recurrent Convolutional Network. , 2018, , .		60
17	Adversarial Learning-Enabled Automatic WiFi Indoor Radio Map Construction and Adaptation With Mobile Robot. IEEE Internet of Things Journal, 2020, 7, 6946-6954.	5.5	53
18	Design Automation for Smart Building Systems. Proceedings of the IEEE, 2018, 106, 1680-1699.	16.4	52

#	Article	IF	Citations
19	Adaptive Localization in Dynamic Indoor Environments by Transfer Kernel Learning. , 2017, , .		50
20	Exploiting cyclic features of walking for pedestrian dead reckoning with unconstrained smartphones. , 2016, , .		47
21	Consensus Adversarial Domain Adaptation. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 5997-6004.	3.6	45
22	Platform and Algorithm Development for a RFID-Based Indoor Positioning System. Unmanned Systems, 2014, 02, 279-291.	2.7	44
23	FreeDetector: Device-Free Occupancy Detection with Commodity WiFi. , 2017, , .		44
24	CareFi: Sedentary Behavior Monitoring System via Commodity WiFi Infrastructures. IEEE Transactions on Vehicular Technology, 2018, 67, 7620-7629.	3.9	44
25	WiFi and Vision Multimodal Learning for Accurate and Robust Device-Free Human Activity Recognition. , 2019, , .		43
26	Robust WiFi-Enabled Device-Free Gesture Recognition via Unsupervised Adversarial Domain Adaptation. , 2018, , .		41
27	SugarMate. , 2017, 1, 1-27.		39
28	An online sequential extreme learning machine approach to WiFi based indoor positioning. , 2014, , .		38
29	MobileDA: Toward Edge-Domain Adaptation. IEEE Internet of Things Journal, 2020, 7, 6909-6918.	5.5	38
30	An RFID indoor positioning system by using weighted path loss and extreme learning machine. , 2013, , .		37
31	Standardizing location fingerprints across heterogeneous mobile devices for indoor localization. , 2016, , .		33
32	Unsupervised WiFi-Enabled IoT Device-User Association for Personalized Location-Based Service. IEEE Internet of Things Journal, 2019, 6, 1238-1245.	5.5	32
33	A mutual information based online access point selection strategy for WiFi indoor localization. , 2015, , .		30
34	Fine-grained adaptive location-independent activity recognition using commodity WiFi. , 2018, , .		30
35	GarbageNet: A Unified Learning Framework for Robust Garbage Classification. IEEE Transactions on Artificial Intelligence, 2021, 2, 372-380.	3.4	29
36	Environmental sensing by wearable device for indoor activity and location estimation. , 2014, , .		26

#	Article	IF	Citations
37	Robust occupancy inference with commodity WiFi. , 2016, , .		26
38	Building-in-Briefcase: A Rapidly-Deployable Environmental Sensor Suite for the Smart Building. Sensors, 2018, 18, 1381.	2.1	26
39	WiFi-enabled Device-free Gesture Recognition for Smart Home Automation. , 2018, , .		25
40	Nonparametric Event Detection in Multiple Time Series for Power Distribution Networks. IEEE Transactions on Industrial Electronics, 2019, 66, 1619-1628.	5.2	24
41	Mind the Discriminability: Asymmetric Adversarial Domain Adaptation. Lecture Notes in Computer Science, 2020, , 589-606.	1.0	24
42	EfficientFi: Toward Large-Scale Lightweight WiFi Sensing via CSI Compression. IEEE Internet of Things Journal, 2022, 9, 13086-13095.	5. 5	24
43	BikeMate., 2017,,.		22
44	An integrative Weighted Path Loss and Extreme Learning Machine approach to Rfid based Indoor Positioning. , $2013, \ldots$		17
45	Multiple Kernel Semi-Representation Learning With Its Application to Device-Free Human Activity Recognition. IEEE Internet of Things Journal, 2019, 6, 7670-7680.	5.5	17
46	Robust adversarial discriminative domain adaptation for real-world cross-domain visual recognition. Neurocomputing, 2021, 433, 28-36.	3.5	17
47	MapSentinel: Can the Knowledge of Space Use Improve Indoor Tracking Further?. Sensors, 2016, 16, 472.	2.1	13
48	Multiple Kernel Representation Learning for WiFi-Based Human Activity Recognition., 2017,,.		12
49	Joint Adversarial Domain Adaptation for Resilient WiFi-Enabled Device-Free Gesture Recognition. , 2018,		12
50	Indoor Occupant Positioning System Using Active RFID Deployment and Particle Filters. , 2014, , .		11
51	Consensus-Based Parallel Extreme Learning Machine for Indoor Localization. , 2016, , .		10
52	Advancing Imbalanced Domain Adaptation: Cluster-Level Discrepancy Minimization With a Comprehensive Benchmark. IEEE Transactions on Cybernetics, 2023, 53, 1106-1117.	6.2	10
53	WinIPS: WiFi-based non-intrusive IPS for online radio map construction., 2016,,.		8
54	Extreme learning machine with dead zone and its application to WiFi based indoor positioning. , 2014, , .		3

#	Article	IF	CITATIONS
55	Robust extreme learning machine for regression problems with its application to wifi based indoor positioning system. , 2014, , .		o
56	Poster Abstract., 2015,,.		0