
William C Gause

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6253624/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Helminth resistance is mediated by differential activation of recruited monocyte-derived alveolar macrophages and arginine depletion. Cell Reports, 2022, 38, 110215.	2.9	30
2	Axl and Mertk Receptors Cooperate to Promote Breast Cancer Progression by Combined Oncogenic Signaling and Evasion of Host Antitumor Immunity. Cancer Research, 2021, 81, 698-712.	0.4	37
3	Early Events Triggering the Initiation of a Type 2 Immune Response. Trends in Immunology, 2021, 42, 151-164.	2.9	25
4	Mining Helminths for Novel Therapeutics. Trends in Molecular Medicine, 2021, 27, 345-364.	3.5	16
5	CAR-NK Cells Effectively Target SARS-CoV-2-Spike-Expressing Cell Lines In Vitro. Frontiers in Immunology, 2021, 12, 652223.	2.2	27
6	Inosine monophosphate and inosine differentially regulate endotoxemia and bacterial sepsis. FASEB Journal, 2021, 35, e21935.	0.2	15
7	Heterogeneity in the initiation, development and function of type 2 immunity. Nature Reviews Immunology, 2020, 20, 603-614.	10.6	75
8	The NET Effect of Neutrophils during Helminth Infection. Cell Host and Microbe, 2020, 27, 165-168.	5.1	6
9	Sterile particle-induced inflammation is mediated by macrophages releasing IL-33 through a Bruton's tyrosine kinase-dependent pathway. Nature Materials, 2019, 18, 289-297.	13.3	39
10	B Cells Produce the Tissue-Protective Protein RELMα during Helminth Infection, which Inhibits IL-17ÂExpression and Limits Emphysema. Cell Reports, 2018, 25, 2775-2783.e3.	2.9	19
11	Helminth Infections Induce Tissue Tolerance Mitigating Immunopathology but Enhancing Microbial Pathogen Susceptibility. Frontiers in Immunology, 2018, 9, 2135.	2.2	26
12	Cutting Edge: Helminth Coinfection Blocks Effector Differentiation of CD8 T Cells through Alternate Host Th2- and IL-10–Mediated Responses. Journal of Immunology, 2017, 198, 634-639.	0.4	25
13	Pla2g1b Places Worms in Peril. Cell Host and Microbe, 2017, 22, 429-431.	5.1	2
14	Helminth infection promotes colonization resistance via type 2 immunity. Science, 2016, 352, 608-612.	6.0	347
15	Macrobiota $\hat{a} \in $ helminths as active participants and partners of the microbiota in host intestinal homeostasis. Current Opinion in Microbiology, 2016, 32, 14-18.	2.3	62
16	Innate cell communication kick-starts pathogen-specific immunity. Nature Immunology, 2016, 17, 356-363.	7.0	195
17	Emerging Functions of Amphiregulin in Orchestrating Immunity, Inflammation, and Tissue Repair. Immunity, 2015, 42, 216-226.	6.6	429
18	Neither Primary nor Memory Immunity to Mycobacterium tuberculosis Infection Is Compromised in Mice with Chronic Enteric Helminth Infection. Infection and Immunity, 2015, 83, 1217-1223.	1.0	30

WILLIAM C GAUSE

#	Article	IF	CITATIONS
19	How helminths go viral. Science, 2014, 345, 517-518.	6.0	22
20	Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nature Immunology, 2014, 15, 938-946.	7.0	298
21	A2B Adenosine Receptor Induces Protective Antihelminth Type 2 Immune Responses. Cell Host and Microbe, 2014, 15, 339-350.	5.1	59
22	Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nature Reviews Immunology, 2013, 13, 607-614.	10.6	396
23	Effect of helminth-induced immunity on infections with microbial pathogens. Nature Immunology, 2013, 14, 1118-1126.	7.0	229
24	Antibodies Trap Tissue Migrating Helminth Larvae and Prevent Tissue Damage by Driving IL-4Rα-Independent Alternative Differentiation of Macrophages. PLoS Pathogens, 2013, 9, e1003771.	2.1	95
25	Adenosine promotes alternative macrophage activation <i>via</i> A2A and A2B receptors. FASEB Journal, 2012, 26, 376-386.	0.2	306
26	An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nature Medicine, 2012, 18, 260-266.	15.2	380
27	Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway. Journal of Experimental Medicine, 2011, 208, 1863-1874.	4.2	182
28	Micrometer-Sized Titanium Particles Can Induce Potent Th2-Type Responses through TLR4-Independent Pathways. Journal of Immunology, 2011, 187, 6491-6498.	0.4	53
29	B Cells Have Distinct Roles in Host Protection against Different Nematode Parasites. Journal of Immunology, 2010, 184, 5213-5223.	0.4	81
30	Characterisation of effector mechanisms at the host:parasite interface during the immune response to tissue-dwelling intestinal nematode parasites. International Journal for Parasitology, 2009, 39, 13-21.	1.3	107
31	Helminthâ€induced alternatively activated macrophages enhance susceptibility to tuberculosis. FASEB Journal, 2008, 22, 860.3.	0.2	0
32	The parasite Nippostrongylus brasiliensis induces multiple regulatory pathways that control increases of ILâ€17 expression and associated pathology in the lung. FASEB Journal, 2008, 22, 848.36.	0.2	0
33	Alternatively activated macrophages in helminth infections. Current Opinion in Immunology, 2007, 19, 448-453.	2.4	302
34	Protective immune mechanisms in helminth infection. Nature Reviews Immunology, 2007, 7, 975-987.	10.6	807
35	Selenium (Se) deficiency alters intestinal diaphorase activity in mice infected with the intestinal parasitic worm Heligmosomoides polygyrus. FASEB Journal, 2007, 21, A63.	0.2	0
36	Memory TH2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nature Medicine, 2006, 12, 955-960.	15.2	469