WiesÅ,aw Ostachowicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6253345/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electromechanical impedance based debond localisation in a composite sandwich structure. Journal of Intelligent Material Systems and Structures, 2022, 33, 1487-1496.	1.4	7
2	A nonlinearity-sensitive approach for detection of "breathing―cracks relying on energy modulation effect. Journal of Sound and Vibration, 2022, 524, 116754.	2.1	13
3	Shear Strain Singularity-Inspired Identification of Initial Delamination in CFRP Laminates: Multiscale Modulation Filter for Extraction of Damage Features. Polymers, 2022, 14, 2305.	2.0	0
4	Guided waves based damage localization based on mode filtering using fiber Bragg grating sensors. Smart Materials and Structures, 2022, 31, 095025.	1.8	3
5	Guided wavefield curvature imaging of invisible damage in composite structures. Mechanical Systems and Signal Processing, 2021, 150, 107240.	4.4	23
6	Nonlinear pseudo-force in a breathing crack to generate harmonics. Journal of Sound and Vibration, 2021, 492, 115734.	2.1	28
7	Strategies for Identification of Elastic Constants in Highly Anisotropic Materials Using Lamb Waves. Lecture Notes in Civil Engineering, 2021, , 779-787.	0.3	1
8	A two-step method for additional mass identification in beam structures by measurements of natural frequencies and guided waves. Measurement: Journal of the International Measurement Confederation, 2021, 186, 110049.	2.5	3
9	Nonlinear elastic wave propagation and breathing-debond identification in a smart composite structure. Composites Part B: Engineering, 2020, 200, 108304.	5.9	14
10	Identification of multiple cracks in noisy conditions using scale-correlation-based multiscale product of SWPT with laser vibration measurement. Mechanical Systems and Signal Processing, 2020, 145, 106889.	4.4	9
11	Identification of instantaneous tension of bridge cables from dynamic responses: STRICT algorithm and applications. Mechanical Systems and Signal Processing, 2020, 142, 106729.	4.4	23
12	Singular energy component for identification of initial delamination in CFRP laminates through piezoelectric actuation and non-contact measurement. Smart Materials and Structures, 2020, 29, 045001.	1.8	15
13	A Data-Driven Damage Identification Framework Based on Transmissibility Function Datasets and One-Dimensional Convolutional Neural Networks: Verification on a Structural Health Monitoring Benchmark Structure. Sensors, 2020, 20, 1059.	2.1	41
14	Lamb-Wave-Based Method in the Evaluation of Self-Healing Efficiency. Applied Sciences (Switzerland), 2020, 10, 2585.	1.3	2
15	A novel damage characterization approach for laminated composites in the absence of material and structural information. Mechanical Systems and Signal Processing, 2020, 143, 106831.	4.4	19
16	Wavelet-aided guided wavefield imaging of delaminations in laminated composite plates. Smart Materials and Structures, 2020, 29, 105029.	1.8	7
17	Nondestructive Analysis of Debonds in a Composite Structure under Variable Temperature Conditions. Sensors, 2019, 19, 3454.	2.1	12
18	A novel method for single and multiple damage detection in beams using relative natural frequency changes. Mechanical Systems and Signal Processing, 2019, 132, 335-352.	4.4	100

#	Article	IF	CITATIONS
19	Delamination-induced relative natural frequency change curve and its use for delamination localization in laminated composite beams. Composite Structures, 2019, 230, 111501.	3.1	20
20	Damage Identification in Various Types of Composite Plates Using Guided Waves Excited by a Piezoelectric Transducer and Measured by a Laser Vibrometer. Sensors, 2019, 19, 1958.	2.1	34
21	Non-uniform crack identification in plate-like structures using wavelet 2D modal curvature under noisy conditions. Mechanical Systems and Signal Processing, 2019, 126, 469-489.	4.4	35
22	Nondestructive analysis of core-junction and joint-debond effects in advanced composite structure. Polymer Testing, 2019, 73, 31-38.	2.3	19
23	Effects of debonding on Lamb wave propagation in a bonded composite structure under variable temperature conditions. Smart Materials and Structures, 2019, 28, 015021.	1.8	30
24	Ultrasonic Lamb waveâ€based debonding monitoring of advanced honeycomb sandwich composite structures. Strain, 2019, 55, e12302.	1.4	23
25	A noise-robust damage indicator for characterizing singularity of mode shapes for incipient delamination identification in CFRP laminates. Mechanical Systems and Signal Processing, 2019, 121, 183-200.	4.4	18
26	Damage-induced acoustic emission source monitoring in a honeycomb sandwich composite structure. Composites Part B: Engineering, 2019, 158, 179-188.	5.9	47
27	Vibration-based damage growth monitoring in beam-like structures. Vibroengineering PROCEDIA, 2019, 28, 12-17.	0.3	1
28	Damage-induced acoustic emission source identification in an advanced sandwich composite structure. Composite Structures, 2018, 202, 860-866.	3.1	27
29	Online detection of barely visible low-speed impact damage in 3D-core sandwich composite structure. Composite Structures, 2018, 185, 646-655.	3.1	42
30	Novel Techniques for Damage Detection Based on Mode Shape Analysis. Computational and Experimental Methods in Structures, 2018, , 173-196.	0.2	2
31	A damage index for identifying incipient delamination in CFRP laminated plates relying on 2D multi-resolution modal Teager-Kaiser energy. , 2018, , .		0
32	A pulse coding and decoding strategy to perform Lamb wave inspections using simultaneously multiple actuators. Mechanical Systems and Signal Processing, 2017, 91, 111-121.	4.4	25
33	Delamination monitoring in CFRP laminated plates under noisy conditions using complex-wavelet 2D curvature mode shapes. Smart Materials and Structures, 2017, 26, 104008.	1.8	21
34	An application of Structural Health Monitoring system based on FBG sensors to offshore wind turbine support structure model. Marine Structures, 2017, 51, 65-86.	1.6	89
35	Moisture contamination detection in adhesive bond using embedded FBG sensors. Mechanical Systems and Signal Processing, 2017, 84, 1-14.	4.4	32
36	Crack Identification in CFRP Laminated Beams Using Multi-Resolution Modal Teager–Kaiser Energy under Noisy Environments. Materials, 2017, 10, 656.	1.3	12

WiesÅ,aw Ostachowicz

#	Article	IF	CITATIONS
37	Damage assessment in wind turbine technology. E3S Web of Conferences, 2017, 14, 01015.	0.2	2
38	A concept of complex-wavelet modal curvature for detecting multiple cracks in beams under noisy conditions. Mechanical Systems and Signal Processing, 2016, 76-77, 555-575.	4.4	49
39	Vibrational damage detection using fractal surface singularities with noncontact laser measurement. JVC/Journal of Vibration and Control, 2016, 22, 2569-2581.	1.5	13
40	Detection of Damage in Metallic Structures for Offshore Applications. , 2016, , 213-232.		0
41	Moisture detection in composites by terahertz spectroscopy. Journal of Physics: Conference Series, 2015, 628, 012100.	0.3	6
42	Identification of Incipient Damage Using High-Frequency Vibrational Responses. Shock and Vibration, 2015, 2015, 1-1.	0.3	2
43	Heat induced damage detection in composite materials by terahertz radiation. , 2015, , .		5
44	Two-dimensional curvature mode shape method based on wavelets and Teager energy for damage detection in plates. Journal of Sound and Vibration, 2015, 347, 266-278.	2.1	71
45	Identification of cracks in thin-walled structures by means of wavenumber filtering. Mechanical Systems and Signal Processing, 2015, 50-51, 456-466.	4.4	121
46	Identification of multiple damage in beams based on robust curvature mode shapes. Mechanical Systems and Signal Processing, 2014, 46, 468-480.	4.4	133
47	Detection of damage in beams using Teager energy operator. Proceedings of SPIE, 2013, , .	0.8	0
48	Damage detection in plates using two-dimensional directional Gaussian wavelets and laser scanned operating deflection shapes. Structural Health Monitoring, 2013, 12, 457-468.	4.3	43
49	Multiscale characterization of damage in plates based on 2D Mexican wavelet. Proceedings of SPIE, 2013, , .	0.8	Ο
50	Structural health monitoring by means of elastic wave propagation. Journal of Physics: Conference Series, 2012, 382, 012003.	0.3	8
51	Fractal Dimension Analysis of Higher-Order Mode Shapes for Damage Identification of Beam Structures. Mathematical Problems in Engineering, 2012, 2012, 1-16.	0.6	715
52	Analytical Modeling and Vibration Analysis of Partially Cracked Rectangular Plates With Different Boundary Conditions and Loading. Journal of Applied Mechanics, Transactions ASME, 2009, 76, .	1.1	66
53	Modelling of wave propagation in composite plates using the time domain spectral element method. Journal of Sound and Vibration, 2007, 302, 728-745.	2.1	164
54	Propagation of in-plane elastic waves in a composite panel. Finite Elements in Analysis and Design, 2006, 43, 145-154.	1.7	25

WiesÅ,aw Ostachowicz

#	Article	IF	CITATIONS
55	The spectral finite element model for analysis of flexural–shear coupled wave propagation. Composite Structures, 2005, 68, 37-44.	3.1	21
56	Elastic Wave Propagation Development for Structural Health Monitoring. , 2005, , 275-286.		1
57	Wave propagation in plate structures for crack detection. Finite Elements in Analysis and Design, 2004, 40, 991-1004.	1.7	41
58	Wave propagation in delaminated beam. Computers and Structures, 2004, 82, 475-483.	2.4	21
59	Finite element model of plate with elasto-plastic through crack. Computers and Structures, 2001, 79, 519-532.	2.4	26
60	A general FE algorithm for 3D incremental analysis of frictional contact problems of elastoplasticity. Finite Elements in Analysis and Design, 1997, 27, 289-305.	1.7	2
61	A general FE computer program for 3D incremental analysis of frictional contact problems of elastoplasticity. Finite Elements in Analysis and Design, 1997, 27, 307-322.	1.7	4
62	Forced vibrations of a beam including dry friction dampers. Computers and Structures, 1989, 33, 851-858.	2.4	6
63	Vibrations of beams with constructional friction. Computers and Structures, 1986, 23, 859-867.	2.4	1
64	Vibrations of beams with elastic contact. Computers and Structures, 1986, 22, 763-771.	2.4	5
65	Mixed finite element method for contact problems. Computers and Structures, 1984, 18, 937-945.	2.4	15
66	Theory of finite element method for elastic contact problems of solid bodies. Computers and Structures, 1983, 17, 51-59.	2.4	30
67	Imaging Delamination in Composite Laminates Using Perturbation to Steady-state Wavefields. Smart Materials and Structures, 0, , .	1.8	2
68	Experimental and Numerical Investigation of Wave Propagation in Composite Beam with an Additional Mass. Key Engineering Materials, 0, , 533-540.	0.4	0
69	Multi-Phased Array for Damage Localisation. Key Engineering Materials, 0, , 77-82.	0.4	1