
Amit K Jha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6253172/publications.pdf Version: 2024-02-01

Δλαιτ Κ Ιμλ

#	Article	IF	CITATIONS
1	Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter, 2012, 8, 3280.	1.2	463
2	Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials, 2009, 30, 6076-6085.	5.7	269
3	Application of 3D Printing for Smart Objects with Embedded Electronic Sensors and Systems. Advanced Materials Technologies, 2016, 1, 1600013.	3.0	167
4	Tissue engineering strategies for promoting vascularized bone regeneration. Bone, 2016, 83, 197-209.	1.4	145
5	Heparin-decorated, hyaluronic acid-based hydrogel particles for the controlled release of bone morphogenetic protein 2. Acta Biomaterialia, 2011, 7, 3050-3059.	4.1	125
6	Structural Analysis and Mechanical Characterization of Hyaluronic Acid-Based Doubly Cross-Linked Networks. Macromolecules, 2009, 42, 537-546.	2.2	112
7	Perlecan domain I-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via BMP-2 release. Biomaterials, 2009, 30, 6964-6975.	5.7	100
8	Enhanced survival and engraftment of transplanted stem cells using growth factor sequestering hydrogels. Biomaterials, 2015, 47, 1-12.	5.7	97
9	Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials, 2011, 32, 2466-2478.	5.7	95
10	Actomyosin-Mediated Tension Orchestrates Uncoupled Respiration in Adipose Tissues. Cell Metabolism, 2018, 27, 602-615.e4.	7.2	70
11	Fabrication and characterization of cross-linkable hydrogel particles based on hyaluronic acid: potential application in vocal fold regeneration. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 223-243.	1.9	66
12	Molecular weight and concentration of heparin in hyaluronic acid-based matrices modulates growth factor retention kinetics and stem cell fate. Journal of Controlled Release, 2015, 209, 308-316.	4.8	65
13	Injectable perlecan domain 1-hyaluronan microgels potentiate the cartilage repair effect of BMP2 in a murine model of early osteoarthritis. Biomedical Materials (Bristol), 2012, 7, 024109.	1.7	63
14	Matrix metalloproteinase-13 mediated degradation of hyaluronic acid-based matrices orchestrates stem cell engraftment through vascular integration. Biomaterials, 2016, 89, 136-147.	5.7	60
15	Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks. Soft Matter, 2010, 6, 5045.	1.2	52
16	Integrin-mediated adhesion and proliferation of human MSCs elicited by a hydroxyproline-lacking, collagen-like peptide. Biomaterials, 2011, 32, 6412-6424.	5.7	49
17	Effects of Matrix Composition, Microstructure, and Viscoelasticity on the Behaviors of Vocal Fold Fibroblasts Cultured in Three-Dimensional Hydrogel Networks. Tissue Engineering - Part A, 2010, 16, 1247-1261.	1.6	48
18	Matrix-Assisted Transplantation of Functional Beige Adipose Tissue. Diabetes, 2015, 64, 3713-3724.	0.3	47

Аміт К Јна

#	Article	IF	CITATIONS
19	A combined hiPSC-derived endothelial cell and in vitro microfluidic platform for assessing biomaterial-based angiogenesis. Biomaterials, 2019, 194, 73-83.	5.7	41
20	Gellan Gum Hydrogels with Enzyme‣ensitive Biodegradation and Endothelial Cell Biorecognition Sites. Advanced Healthcare Materials, 2018, 7, 1700686.	3.9	39
21	Controlling Osteogenic Stem Cell Differentiation via Soft Bioinspired Hydrogels. PLoS ONE, 2014, 9, e98640.	1.1	35
22	TGF-β1/CD105 signaling controls vascular network formation within growth factor sequestering hyaluronic acid hydrogels. PLoS ONE, 2018, 13, e0194679.	1.1	29
23	Multivalent hyaluronic acid bioconjugates improve sFlt-1 activity inÂvitro. Biomaterials, 2016, 93, 95-105.	5.7	25
24	A Bioengineering Approach to Myopia Control Tested in a Guinea Pig Model. , 2017, 58, 1875.		15
25	Endochondral bone tissue engineering: using cartilage to drive vascularized bone regeneration (87.6). FASEB Journal, 2014, 28, 87.6.	0.2	0