Harald Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6252857/publications.pdf

Version: 2024-02-01

330 papers 6,295 citations

37 h-index

94433

98798 67 g-index

337 all docs

337 docs citations

times ranked

337

4873 citing authors

#	Article	IF	CITATIONS
1	Pump-induced terahertz anisotropy in bilayer graphene. Physical Review B, 2022, 105, .	3.2	2
2	Terahertz control of photoluminescence emission in few-layer InSe. Applied Physics Letters, 2022, 120, .	3.3	4
3	Ultrafast phenomena and terahertz waves: introduction. Journal of the Optical Society of America B: Optical Physics, 2022, 39, UPT1.	2.1	3
4	Preventing the breakdown of photoconductive terahertz emitter at high bias-field operation. , 2021, , .		0
5	High-field charge transport in InGaAs nanowires. , 2021, , .		O
6	Limitation of THz conversion efficiency in DSTMS pumped by intense femtosecond pulses. Optics Express, 2021, 29, 22494-22503.	3 . 4	2
7	High–Bias–Field Operation of GaAs Photoconductive Terahertz Emitters. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42, 537-546.	2.2	4
8	A Twoâ€Dimensional Polyimideâ€Graphene Heterostructure with Ultraâ€fast Interlayer Charge Transfer. Angewandte Chemie - International Edition, 2021, 60, 13859-13864.	13.8	18
9	Investigation of an Opposed-Contact GaAs Photoconductive Semiconductor Switch at 1-kHz Excitation. IEEE Transactions on Electron Devices, 2021, 68, 2355-2359.	3.0	14
10	High-field THz pulses from a GaAs photoconductive emitter for non-linear THz studies. Optics Express, 2021, 29, 19920.	3.4	4
11	Anisotropic Terahertz Pump-Probe Response of Bilayer Graphene. , 2021, , .		O
12	Actively mode-locked pulses from a mid-IR quantum cascade laser. , 2021, , .		0
13	Enhanced Trion Emission in Monolayer MoSe ₂ by Constructing a Typeâ€l Van Der Waals Heterostructure. Advanced Functional Materials, 2021, 31, 2104960.	14.9	21
14	Optical Kerr nonlinearity and multiphoton absorption of DSTMS measured by the Z-scan method. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2511.	2.1	1
15	Kinetic Monteâ€Carlo Simulation of Exciton Hopping: Urbach Tails in Gasâ€Molecule Decorated MoSe 2. Physica Status Solidi (B): Basic Research, 2021, 258, 2100186.	1.5	O
16	Gold implanted germanium photoswitch for cavity dumping of a free-electron laser. Applied Physics Letters, 2021, 118, .	3.3	4
17	BaFe2As2 Investigated by Pump-Probe Spectroscopy under High Pressures. , 2021, , .		O
18	Siliconâ€Based Intermediateâ€Band Infrared Photodetector Realized by Te Hyperdoping. Advanced Optical Materials, 2021, 9, 2001546.	7.3	19

#	Article	IF	CITATIONS
19	Improved Germanium photoswitch for cavity dumping of a free-electron laser., 2021,,.		0
20	THz conversion efficiency in DSTMS limited by high-order nonlinearities. , 2021, , .		0
21	Fifth-harmonic generation in Si:B pumped with intense terahertz pulses. , 2021, , .		O
22	Terahertz modulation of the trion resonance in MoSe2 monolayer., 2021,,.		0
23	High electron mobility in strained GaAs nanowires. Nature Communications, 2021, 12, 6642.	12.8	28
24	Mode-locked short pulses from an $8\hat{A}^{1/4}$ m wavelength semiconductor laser. Nature Communications, 2020, 11, 5788.	12.8	37
25	Performance Investigation of Bulk Photoconductive Semiconductor Switch Based on Reversely Biased p ⁺ -i-n ⁺ Structure. IEEE Transactions on Electron Devices, 2020, 67, 4963-4969.	3.0	5
26	Intracavity third-harmonic generation in Si:B pumped by intense terahertz pulses. Physical Review B, 2020, 102, .	3.2	21
27	Nonlinear Charge Transport in InGaAs Nanowires at Terahertz Frequencies. Nano Letters, 2020, 20, 3225-3231.	9.1	12
28	Up to 70 THz bandwidth from an implanted Ge photoconductive antenna excited by a femtosecond Er:fibre laser. Light: Science and Applications, 2020, 9, 30.	16.6	37
29	Broadband Photodetectors: Demonstration of a Broadband Photodetector Based on a Twoâ€Dimensional Metal–Organic Framework (Adv. Mater. 9/2020). Advanced Materials, 2020, 32, 2070071.	21.0	2
30	Demonstration of a Broadband Photodetector Based on a Twoâ€Dimensional Metal–Organic Framework. Advanced Materials, 2020, 32, e1907063.	21.0	103
31	Photoluminescence dynamics in few-layer InSe. Physical Review Materials, 2020, 4, .	2.4	14
32	All-THz pump-probe spectroscopy of the intersubband AC-Stark effect in a wide GaAs quantum well. Optics Express, 2020, 28, 25358.	3.4	2
33	Ultrashort pulses from a 8 î $\frac{1}{4}$ m wavelength semiconductor laser. , 2020, , .		0
34	Nonlinear plasmonic response in GaAs/InGaAs core/shell nanowires. , 2020, , .		0
35	Non-plasmonic improvement in photoconductive THz emitters using nano- and micro-structured electrodes. Optics Express, 2020, 28, 35490.	3.4	3
36	Nonlinear IR and THz Spectroscopy of Semiconductor Nanowires. , 2020, , .		0

#	Article	IF	Citations
37	Effective Hexagonal Boron Nitride Passivation of Few-Layered InSe and GaSe to Enhance Their Electronic and Optical Properties. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43480-43487.	8.0	44
38	Pump – probe THz spectroscopy study of electronic properties of semiconductor nanowires. , 2019, , .		1
39	Transient Characteristics of Interdigitated GaAs Photoconductive Semiconductor Switch at 1-kHz Excitation. IEEE Electron Device Letters, 2019, 40, 1136-1138.	3.9	8
40	Broadband and High Electric Field THz Pulse Emission from Photoconductive Emitters. , 2019, , .		0
41	Widely tunable GaAs bandgap via strain engineering in core/shell nanowires with large lattice mismatch. Nature Communications, 2019, 10, 2793.	12.8	78
42	Absorption edge, urbach tail, and electron-phonon interactions in topological insulator Bi2Se3 and band insulator (Bi0.89In0.11)2Se3. Applied Physics Letters, 2019, 114, .	3.3	10
43	Optical pump – THz probe response of VO2 under high pressure. EPJ Web of Conferences, 2019, 205, 04003.	0.3	O
44	Exciton localization in MoSe2monolayers induced by adsorbed gas molecules. Applied Physics Letters, 2019, 114, 172106.	3.3	15
45	Plasmonic field guided patterning of ordered colloidal nanostructures. Nanophotonics, 2019, 8, 505-512.	6.0	5
46	Electron dynamics in $In < sub > (i > x < /i > < /sub > Ga < sub > 1a^3 < (i > x < /i > < /sub > As shells around GaAs nanowires probed by terahertz spectroscopy. Nanotechnology, 2019, 30, 244004.$	2.6	9
47	Effect of the dopant location and the number of Bragg mirrors on the performance of superlattice infrared photodetectors. , 2019, , .		O
48	Scalable Large-Area Terahertz Emitters with Improved Electrode Design. , 2019, , .		1
49	Ultrafast metallization in NbO2 studied by pump-probe THz spectroscopy. , 2019, , .		0
50	Plasmonic nonlinearity in GaAs/In0.20Ga0.80As core/shell nanowires. , 2019, , .		0
51	Cavity enhanced third-harmonic generation in Si:B pumped with intense terahertz pulses. , 2019, , .		O
52	Nonthermal nature of photoinduced insulator-to-metal transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>NbO</mml:mi><mml:mn>2<td>l:mā.2<td>nl:nnsub></td></td></mml:mn></mml:msub></mml:math>	l:m ā. 2 <td>nl:nnsub></td>	nl:nnsub>
53	Nonlinear plasmonic response of doped nanowires observed by infrared nanospectroscopy. Nanotechnology, 2019, 30, 084003.	2.6	10
54	Improved electrode design for interdigitated large-area photoconductive terahertz emitters. Optics Express, 2019, 27, 13108.	3.4	17

#	Article	IF	Citations
55	Filling the 5-10 THz gap using Ge-based photoconductive emitter. , 2019, , .		O
56	Infrared nanoscopy down to liquid helium temperatures. Review of Scientific Instruments, 2018, 89, 033702.	1.3	16
57	Dressing Intersubband Transitions at Terahertz Frequencies. , 2018, , .		0
58	FELBE -Upgrades and Status of the IRITHz FEL User Facility at HZDR. , 2018, , .		5
59	Broadband Spectrum from a Photoconductive Emitter Spanning up to 13 THz., 2018, , .		0
60	Theoretical analysis of the length distributions of Ga-catalyzed GaAs nanowires. Journal of Physics: Conference Series, 2018, 1124, 022039.	0.4	0
61	Enhanced photoresponses of an optically driven VO2-based terahertz wave modulator near percolation threshold. Applied Physics Letters, 2018, 113, .	3.3	10
62	A simple route to synchronized nucleation of self-catalyzed GaAs nanowires on silicon for sub-Poissonian length distributions. Nanotechnology, 2018, 29, 504004.	2.6	15
63	Ultrafast response of photoexcited carriers in VO ₂ at high-pressure. New Journal of Physics, 2018, 20, 083003.	2.9	15
64	Fano signatures between intersubband and ponderomotive responses in MQW structures. Optics Express, 2018, 26, 24054.	3.4	0
65	Extended infrared Photoresponse in <mmi:math display="inline" overflow="scroll" xmins:mmi="http://www.w3.org/1998/Math/Math/ML"><mmi:math display="inline" overflow="scroll" xmins:mmi="http://www.w3.org/1998/Math/MathML"><mmi:math display="inline" overflow="scroll" xmins:mml="http://www.w3.org/1998/Math/MathML"><mmi:math display="inline" overflow="scroll" xmins:mmi="http://www.w3.org/1998/Math/MathML"><mmi:math display="inline" overflow="scroll" xmins:mmi="http://www.w3.org/1998/Math/MathML"></mmi:math></mmi:math></mmi:math></mmi:math></mmi:math></mmi:math></mmi:math></mmi:math></mmi:math></mmi:math></mmi:math></mmi:math></mmi:math></mmi:math>		

#	Article	IF	CITATIONS
73	Room-temperature short-wavelength infrared Si photodetector. Scientific Reports, 2017, 7, 43688.	3.3	79
74	Doubly Dressed Bosons: Exciton Polaritons in a Strong Terahertz Field. Physical Review Letters, 2017, 119, 077403.	7.8	7
75	Decoupling the Two Roles of Ga Droplets in the Self-Catalyzed Growth of GaAs Nanowires on SiO _{<i>x</i>} /Si(111) Substrates. Crystal Growth and Design, 2017, 17, 5276-5282.	3.0	26
76	Ultrafast Processes in Graphene: From Fundamental Manybody Interactions to Device Applications. Annalen Der Physik, 2017, 529, 1700022.	2.4	10
77	Carrier Dynamics in Graphene: Ultrafast Manyâ€Particle Phenomena. Annalen Der Physik, 2017, 529, 1700038.	2.4	26
78	Symmetry-Breaking Supercollisions in Landau-Quantized Graphene. Physical Review Letters, 2017, 119, 067405.	7.8	10
79	Low-temperature intracenter relaxation times of shallow donors in germanium. JETP Letters, 2017, 106, 571-575.	1.4	15
80	THz Nonlinear Response of Landau-Quantized Graphene., 2017,,.		0
81	Long-lived Anisotropy of Photoexcited Graphene Electrons. , 2016, , .		O
82	Plasmonic efficiency enhancement at the anode of strip line photoconductive terahertz emitters. Optics Express, 2016, 24, 22628.	3.4	15
83	Inter-sublevel dynamics in single InAs/GaAs quantum dots induced by strong terahertz excitation. Applied Physics Letters, 2016, 108, .	3.3	6
84	Excitonic mobility edge and ultra-short photoluminescence decay time in n-type GaAsN. Applied Physics Letters, 2016, 109, .	3.3	2
85	Tracing the Gouy phase shift of focused, radially polarized THz pulses. , 2016, , .		O
86	First Terahertz-range Experiments on Pump – Probe Setup at Novosibirsk free Electron Laser. Physics Procedia, 2016, 84, 152-156.	1.2	12
87	Lattice vibrations and electrical transport in (Bi1 \hat{a} ' <i>x</i> ln <i>x</i>)2Se3 films. Applied Physics Letters, 2016, 109, .	3.3	4
88	Electrode width dependent performance of THz photoconductive emitters. , 2016, , .		1
89	Role of Transient Reflection in Graphene Nonlinear Infrared Optics. ACS Photonics, 2016, 3, 1069-1075.	6.6	14
90	Dynamics of nonequilibrium electrons on neutral center states of interstitial magnesium donors in silicon. Physical Review B, 2016, 94, .	3.2	9

#	Article	IF	Citations
91	Slow Noncollinear Coulomb Scattering in the Vicinity of the Dirac Point in Graphene. Physical Review Letters, 2016, 117, 087401.	7.8	40
92	High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter. Scientific Reports, 2016, 6, 22256.	3.3	121
93	Droplet-Confined Alternate Pulsed Epitaxy of GaAs Nanowires on Si Substrates down to CMOS-Compatible Temperatures. Nano Letters, 2016, 16, 4032-4039.	9.1	20
94	Gouy phase shift of a tightly focused, radially polarized beam. Optica, 2016, 3, 35.	9.3	32
95	Far-Infrared Nonlinear Optics in Multilayer Epitaxial Graphene. , 2016, , .		0
96	Terahertz pump $\hat{a}\in$ " Terahertz probe system at Novosibirsk free electron laser: Commissioning and results of first experiments. , 2016, , .		0
97	Plasmonic Superlensing in Doped GaAs. Nano Letters, 2015, 15, 1057-1061.	9.1	48
98	Single-pulse picking at kHz repetition rates using a Ge plasma switch at the free-electron laser FELBE. Review of Scientific Instruments, 2015, 86, 063103.	1.3	8
99	Universal ultrafast detector for short optical pulses based on graphene. Optics Express, 2015, 23, 28728.	3.4	23
100	High-Temperature Photon-Noise-Limited Performance Terahertz Quantum-Well Photodetectors. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 715-724.	3.1	12
101	Direct determination of the electron effective mass of GaAsN by terahertz cyclotron resonance spectroscopy. Applied Physics Letters, 2015, 107, .	3.3	9
102	Carrier dynamics in Landau-quantized graphene featuring strong Auger scattering. Nature Physics, 2015, 11, 75-81.	16.7	79
103	Two-photon quantum well infrared photodetectors below 6 THz. Infrared Physics and Technology, 2015, 70, 30-33.	2.9	12
104	Intraband carrier dynamics in Landau-quantized multilayer epitaxial graphene. New Journal of Physics, 2014, 16, 123021.	2.9	17
105	Characterizing intra-exciton Coulomb scattering in terahertz excitations. Applied Physics Letters, 2014, 105, 201109.	3.3	3
106	Observation and manipulation of dipole-forbidden exciton transitions in semiconductors., 2014,,.		0
107	Magnetic control of Coulomb scattering and terahertz transitions among excitons. Physical Review B, 2014, 89, .	3.2	5
108	Systematic investigation of terahertz-induced excitonic Rabi splitting. Physical Review B, 2014, 89, .	3.2	16

#	Article	IF	CITATIONS
109	Nearâ€roomâ€temperature photonâ€noiseâ€limited quantum well infrared photodetector. Laser and Photonics Reviews, 2014, 8, 297-302.	8.7	8
110	Re-Examining the Doping Effect on the Performance of Quantum Well Infrared Photodetectors. IEEE Journal of Quantum Electronics, 2014, 50, 3-6.	1.9	6
111	Dark current mechanism of terahertz quantum-well photodetectors. Journal of Applied Physics, 2014, 116, .	2.5	8
112	Anisotropy of Excitation and Relaxation of Photogenerated Charge Carriers in Graphene. Nano Letters, 2014, 14, 1504-1507.	9.1	77
113	Ultrafast graphene-based broadband THz detector. Applied Physics Letters, 2013, 103, .	3.3	174
114	Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 <i>μ</i> m. Applied Physics Letters, 2013, 103, .	3.3	18
115	InGaAs-based large area photoconductive emitters for 1.55 & amp; #x00B5; m excitation., 2013,,.		0
116	Longitudinal fields in focused terahertz beams. , 2013, , .		0
117	Large area photoconductive terahertz emitter for 1.55 \hat{l} /4m excitation based on an InGaAs heterostructure. Nanotechnology, 2013, 24, 214007.	2.6	25
118	Semiconductor quantum well excitons in strong, narrowband terahertz fields. New Journal of Physics, 2013, 15, 065007.	2.9	29
119	Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior. Journal of Physics Condensed Matter, 2013, 25, 054202.	1.8	59
120	The THz user facility FELBE at the radiation source ELBE of Helmholtz-Zentrum Dresden-Rossendorf. , 2013, , .		1
121	Extra-long hole spin relaxation time in InGaAs/GaAs quantum wells probed by cyclotron resonance spectroscopy., 2013,,.		0
122	Inter-sublevel dephasing in quantum dots. , 2013, , .		0
123	Intersublevel dephasing in InAs/GaAs quantum dots below the Reststrahlen band. Applied Physics Letters, 2013, 103, .	3.3	4
124	THz free-electron laser spectroscopy of magnetoexcitons in semiconductor quantum wells. , 2013, , .		0
125	Observation of Forbidden Exciton Transitions Mediated by Coulomb Interactions in Photoexcited Semiconductor Quantum Wells. Physical Review Letters, 2013, 110, 137404.	7.8	27
126	Long spin relaxation time of holes in InGaAs/GaAs quantum wells probed by cyclotron resonance spectroscopy. Physical Review B, 2013, 87, .	3.2	1

#	Article	IF	CITATIONS
127	Plasmonic focusing on metal and semiconductor disks under radially polarized terahertz illumination. , $2013, \ldots$		O
128	Ultrafast graphene-based THz detection at room temperature. , 2013, , .		0
129	Terahertzâ€induced effects on excitons in magnetic field. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1218-1221.	0.8	2
130	Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams. New Journal of Physics, 2012, 14, 103049.	2.9	47
131	Fano effect due to ponderomotive coupling in intersubband response of semiconductor quantum wells. Physical Review B, 2012, 86, .	3.2	1
132	In-plane interdot carrier transfer in InAs/GaAs quantum dots. Applied Physics Letters, 2012, 100, 152101.	3.3	7
133	Master equation approach of classical noise in intersubband detectors. Physical Review B, 2012, 85, .	3.2	11
134	Free-electron laser spectroscopy of quantum well exciton dynamics., 2012,,.		0
135	Study of lifetimes and photoconductivity relaxation in heterostructures with Hg x Cd1 \hat{a} ° x Te/Cd y Hg1 \hat{a} ° y Te quantum wells. Semiconductors, 2012, 46, 1362-1366.	0.5	34
136	Intersublevel Spectroscopy on Single InAs-Quantum Dots by Terahertz Near-Field Microscopy. Nano Letters, 2012, 12, 4336-4340.	9.1	51
137	Nonlinear transmission dynamics in graphene close to the Dirac point., 2011,,.		0
138	Mid-infrared pump-related electric-field domains in GaAs/(Al,Ga)As quantum-cascade structures for terahertz lasing without population inversion. Journal of Applied Physics, 2011, 110, 103104.	2.5	12
139	Direct Evidence Of Long Lived Trapped Carriers In InGaAsâ^•GaAs Quantum Dots Studied Using Terahertz-activated Luminescence Measurements., 2011,,.		O
140	Terahertz Induced Intra-excitonic Autler-Townes Effect In Semiconductor Quantum Wells. AIP Conference Proceedings, 2011, , .	0.4	0
141	Photoluminescence dynamics in GaAs/AlGaAs quantum wells under pulsed intersubband excitation. Applied Physics Letters, 2011, 99, .	3.3	16
142	Carrier Relaxation in Epitaxial Graphene Photoexcited Near the Dirac Point. Physical Review Letters, 2011, 107, 237401.	7.8	269
143	Terahertz nonlinear optics using intraâ€excitonic quantum well transitions: Sideband generation and AC Stark splitting. Physica Status Solidi (B): Basic Research, 2011, 248, 859-862.	1.5	9
144	Modification to the central-cell correction of germanium acceptors. Physical Review B, 2011, 84, .	3.2	3

#	Article	IF	CITATIONS
145	Simultaneous time and wavelength resolved spectroscopy under two-colour near infrared and terahertz excitation. Review of Scientific Instruments, 2011, 82, 103107.	1.3	23
146	Compact magnetospectrometer for pulsed magnets based on infrared quantum cascade lasers. Review of Scientific Instruments, 2011, 82, 033108.	1.3	15
147	Ultrafast carrier capture and THz resonances in InGaAs quantum posts. Proceedings of SPIE, 2011, , .	0.8	0
148	Time resolved spectroscopy on quantum dots and graphene at the FELBE free-electron laser. Proceedings of SPIE, 2011, , .	0.8	0
149	The cyclotron resonance of holes in InGaAs/GaAs heterostructures with quantum wells in quantizing magnetic fields. Semiconductors, 2010, 44, 1492-1494.	0.5	7
150	Longitudinal fields in focused radially polarized terahertz beams. , 2010, , .		0
151	Infrared magneto-spectroscopy using quantum cascade lasers. , 2010, , .		О
152	Terahertz activated luminescence of trapped carriers in InGaAs/GaAs quantum dots. Applied Physics Letters, 2010, 97, 031101.	3.3	9
153	Terahertz optical sideband emission in self-assembled quantum dots. Applied Physics Letters, 2010, 96, .	3.3	3
154	Intraexciton terahertz nonlinear optics in semiconductor quantum wells: Sideband generation and AC Stark splitting. , 2010, , .		0
155	Excitation wavelength dependence of phase matched terahertz emission from a GaAs slab. Optics Express, 2010, 18, 19574.	3.4	2
156	Quantitative determination of the charge carrier concentration of ion implanted silicon by IR-near-field spectroscopy. Optics Express, 2010, 18, 26206.	3.4	23
157	Observation of the Intraexciton Autler-Townes Effect in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>GaAs</mml:mi><mml:mo>/</mml:mo><mml:mi>AlGaAs</mml:mi></mml:math> Semic Ouantum Wells. Physical Review Letters. 2010. 105. 167401.	onductor	113
158	Carrier Capture Studies in InGaAs Quantum Posts. , 2010, , .		0
159	Mode-locking via active gain modulation in quantum cascade lasers. , 2009, , .		1
160	High-field splitting of the cyclotron resonance absorption in strained <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mtext>-InGaAs</mml:mtext><mml:mtext><mml:mo>/</mml:mo><mwells. .<="" 2009,="" 79,="" b,="" physical="" review="" td=""><td>nml:mtext:</td><td>• GaAs</td></mwells.></mml:mtext></mml:mrow></mml:math>	nml:mtext:	• GaAs
161	Ultrafast carrier capture in InGaAs quantum posts. Applied Physics Letters, 2009, 95, .	3.3	10
162	Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells. Applied Physics Letters, 2009, 94, 241105.	3.3	22

#	Article	IF	CITATIONS
163	Fano Signatures in the Intersubband Terahertz Response of Optically Excited Semiconductor Quantum Wells. Physical Review Letters, 2009, 102, 127403.	7.8	27
164	Free-space propagation of radially and azimuthally polarized terahertz Bessel-Gauss beams. , 2009, , .		0
165	Large-area terahertz emitters based on GalnAsN. , 2009, , .		0
166	Terahertz emitters and detectors for radially and azimuthally polarized beams. Proceedings of SPIE, 2009, , .	0.8	0
167	Quadratic detection with two-photon quantum well infrared photodetectors. Infrared Physics and Technology, 2009, 52, 419-423.	2.9	7
168	Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas. Optics Express, 2009, 17, 1571.	3.4	68
169	Terahertz two-photon quantum well infrared photodetector. Optics Express, 2009, 17, 12279.	3.4	24
170	Mode-locked pulses from mid-infrared Quantum Cascade Lasers. Optics Express, 2009, 17, 12929.	3.4	168
171	Two color pump-probe studies of intraminiband relaxation in doped GaAs/AlGaAs superlattices. , 2009, , .		0
172	Fano profile in the intersubband terahertz response of photoexcited GaAs/AlGaAs quantum wells. Journal of Physics: Conference Series, 2009, 193, 012073.	0.4	1
173	Inefficiency of intervalley transfer in narrow InGaAs/AlAsSb quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 229-231.	0.8	5
174	Generation and Detection of THz Radiation With Scalable Antennas Based on GaAs Substrates With Different Carrier Lifetimes. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 449-457.	2.9	41
175	Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning. Physical Review A, 2008, 77, .	2.5	184
176	Two-photon photocurrent autocorrelation using intersubband transitions at nearly-resonant excitation. Optics Express, 2008, 16, 1523.	3.4	7
177	Leistungsstarke Emitter und einfach handhabbare Detektoren für die Terahertz-Time-Domain-Spektroskopie (Powerful Emitters and Easy-to-Use Detectors for) Tj ETQq1 1 0.784314 r	gB ō. fOver	lock 10 Tf 50
178	Science at the Dresden High Magnetic Field Laboratory. AIP Conference Proceedings, 2008, , .	0.4	9
179	Terahertz emission from a large-area GalnAsN emitter. Applied Physics Letters, 2008, 93, 101102.	3.3	9
180	Terahertz vector beams. , 2008, , .		0

#	Article	IF	CITATIONS
181	Two-color pump-probe studies of intraminiband relaxation in doped GaAsâ^•AlGaAs superlattices. Applied Physics Letters, 2008, 92, 051104.	3.3	2
182	Room-temperature midinfrared two-photon photodetector. Applied Physics Letters, 2008, 93, .	3.3	13
183	Easy-to-Use Scalable Antennas for Coherent Detection of THz Radiation. Springer Proceedings in Physics, 2008, , 167-169.	0.2	0
184	Large-area photoconductive terahertz detectors. , 2007, , .		0
185	Two-photon photocurrent spectroscopy of electron intersubband relaxation and dephasing in quantum wells. Applied Physics Letters, 2007, 91, .	3.3	16
186	Coherent terahertz detection with a large-area photoconductive antenna. Applied Physics Letters, 2007, 91, .	3.3	36
187	Measurements of non-Gaussian noise in quantum wells. Physical Review B, 2007, 76, .	3.2	6
188	Non-Gaussian noise in quantum wells. , 2007, , .		0
189	Autocorrelation measurements of the FELBE free-electron laser and photocurrent saturation study in two-photon QWIPs., 2007,,.		0
190	Portable THz cyclotron resonance spectrometer in the range 3 to 30THz., 2007,,.		0
191	Impact of Interface Formation on Intersubband Transitions in MBE GalnAs:Si/AlAsSb Multiple Coupled DQWs. Indium Phosphide and Related Materials Conference (IPRM), IEEE International Conference on, 2007, , .	0.0	0
192	Intersubband relaxation dynamics in single and double quantum wells based on strained InGaAsâ^•AlAsâ^•AlAsSb. Applied Physics Letters, 2007, 91, .	3.3	9
193	Intersubband Relaxation Dynamics in Narrow InGaAs/AlAsSb Quantum Well Structures Studied by Femtosecond Pump-Probe Spectroscopy. AIP Conference Proceedings, 2007, , .	0.4	0
194	Autocorrelation measurements of free-electron laser radiation using a two-photon QWIP. Infrared Physics and Technology, 2007, 50, 95-99.	2.9	10
195	Miscellaneous Effects. , 2006, , 107-138.		0
196	Quadratic autocorrelation of free-electron laser radiation and photocurrent saturation in two-photon quantum well infrared photodetectors. Applied Physics Letters, 2006, 89, 133508.	3.3	19
197	Femtosecond pump-probe spectroscopy of intersubband relaxation dynamics in narrow InGaAsâ^•AlAsSb quantum well structures. Applied Physics Letters, 2006, 89, 171104.	3.3	25
198	Quantum-well infrared photodetector with voltage-switchable quadratic and linear response. Applied Physics Letters, 2006, 88, 051117.	3.3	7

#	Article	IF	CITATIONS
199	FELBE Free-Electron Laser: Status and Application for Time Resolved Spectroscopy Experiments. , 2006, , .		5
200	Domain pinning in GaAsâ^•AlGaAs quantum well infrared photodetectors. Applied Physics Letters, 2006, 88, 051114.	3.3	9
201	Dynamics, Ultrafast, and Heterodyne., 2006,, 203-228.		O
202	Basics of Infrared Detection. , 2006, , 5-12.		0
203	Photoconductive QWIP., 2006,, 45-81.		O
204	Photovoltaic QWIP., 2006,, 83-95.		0
205	Optical Coupling. , 2006, , 97-105.		0
206	Related Structures and Devices. , 2006, , 139-172.		0
207	Angular response of grating-coupled quantum well infrared photodetectors: an experimental study. , 2005, 5783, 747.		0
208	Third generation focal plane array IR detection modules and applications (Invited Paper)., 2005,,.		10
209	Infrared focal plane array based on MWIR/LWIR dual-band QWIPs: detector optimization and array properties. , 2005, , .		2
210	Two-photon QWIPs for quadratic detection of weak mid-infrared laser pulses. Infrared Physics and Technology, 2005, 47, 182-187.	2.9	7
211	Dual-band QWIP focal plane array for the second and third atmospheric windows. Infrared Physics and Technology, 2005, 47, 53-58.	2.9	28
212	Ultrasensitive femtosecond two-photon detector with resonantly enhanced nonlinear absorption. Optics Letters, 2005, 30, 287.	3.3	25
213	Resonant two-photon photoemission in quantum-well infrared photodetectors. Applied Physics Letters, 2004, 84, 5162-5164.	3.3	22
214	Third-generation focal plane array IR detection modules and applications. , 2004, 5406, 184.		33
215	High-resolution 3–5 [micro sign]mâ^•8–12 [micro sign]m dual-band quantum well infrared photodete array. Electronics Letters, 2004, 40, 831.	ector 1.0	11
216	High responsivity, dual-band response and intraband avalanche multiplication in InGaAs/InP quantum well photodetectors. Semiconductor Science and Technology, 2004, 19, 442-445.	2.0	11

#	Article	IF	CITATIONS
217	Swept away [quantum-well infrared photodetectors]. IEEE Circuits and Devices: the Magazine of Electronic and Photonic Systems, 2003, 19, 9-16.	0.4	10
218	Time-resolved electron transport studies on InGaAs/GaAs-QWIPs. Infrared Physics and Technology, 2003, 44, 355-361.	2.9	2
219	Status of third-generation focal plane array IR detection modules at AIM. , 2003, , .		4
220	Voltage-tunable, two-band mid-infrared detection based on Si/SiGe quantum-cascade injector structures. Applied Physics Letters, 2003, 83, 3879-3881.	3.3	8
221	Avalanche multiplication due to impact ionization in quantum-well infrared photodetectors: A quantitative approach. Applied Physics Letters, 2003, 82, 2907-2909.	3.3	16
222	Determination of the electron capture time in quantum-well infrared photodetectors using time-resolved photocurrent measurements. Applied Physics Letters, 2003, 82, 3925-3927.	3.3	12
223	Theory of avalanche multiplication and excess noise in quantum-well infrared photodetectors. Applied Physics Letters, 2003, 82, 4376-4378.	3.3	16
224	High-resolution QWIP FPAs for the 8- to $12-\hat{l}\frac{1}{4}$ m and 3- to $5-\hat{l}\frac{1}{4}$ m regimes. , 2003, 4820, 297.		13
225	Influence of the recharging process on the dark current noise in quantum-well infrared photodetectors. Applied Physics Letters, 2002, 80, 862-864.	3.3	15
226	Electron transport studies on In0.30Ga0.70As/GaAs-quantum-well infrared photodetectors using time-resolved photocurrent measurements. Applied Physics Letters, 2002, 81, 3401-3403.	3.3	7
227	QWIP LWIR cameras with NETD<10 mK and improved low-frequency drift for long observation time in medicine and research., 2002, 4721, 165.		2
228	Improvement of λâ‰^5 μm quantum cascade lasers by blocking barriers in the active regions. Applied Phy Letters, 2002, 80, 2048-2050.	sics 3.3	28
229	Third gen focal plane array IR detection modules at AIM. Infrared Physics and Technology, 2002, 43, 257-263.	2.9	5
230	Low-noise quantum well infrared photodetectors for high-resolution thermal imaging. , 2002, , 203-208.		0
231	Ten years of QWIP development at Fraunhofer IAF. Infrared Physics and Technology, 2001, 42, 283-289.	2.9	38
232	<title>Responsivity and gain in InGaAs/GaAs-QWIPs and GaAs/AlGaAs-QWIPs: a comparative study</title> ., 2001, 4288, 379.		11
233	Third-generation focal plane array IR detection modules at AlM., 2001, 4369, 547.		20
234	<title>High-performance focal plane array modules for research and development</title> ., 2000, 4020, 257.		2

#	Article	IF	Citations
235	QWIP FPAs for high-performance thermal imaging. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 101-107.	2.7	56
236	Noise current investigations of g–r noise limited and shot noise limited QWIPs. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 124-129.	2.7	22
237	<title>High-resolution focal plane array IR detection modules and digital signal processing technologies at AIM</title> ., 2000,,.		6
238	Low-noise QWIPs for FPA sensors with high thermal resolution. , 2000, 4130, 353.		16
239	Response to "Comment on â€`Noise gain and detectivity of n-type GaAs/AlGaAs quantum well infrared photodetectors' ―[Appl. Phys. Lett. 74, 892 (1999)]. Applied Physics Letters, 1999, 74, 892-892.	3.3	0
240	Influence of optical interference on quantum well infrared photodetectors in a $45 \hat{A}^\circ$ waveguide geometry. Applied Physics Letters, 1999, 74, 16-18.	3.3	45
241	Coherent carrier propagation in the continuum of asymmetric quantum-well structures. Physical Review B, 1999, 60, R13993-R13996.	3.2	5
242	High-speed photocurrent in quantum well infrared photodetectors. , 1999, 3794, 47.		0
243	Photogalvanic effect in asymmetric quantum wells and superlattices. Superlattices and Microstructures, 1998, 23, 1289-1295.	3.1	5
244	Generation of subpicosecond infrared pulses tunable between 5.2 \hat{l} 4m and 18 \hat{l} 4m at a repetition rate of 76 MHz. Applied Physics B: Lasers and Optics, 1998, 66, 27-30.	2.2	58
245	Ballistic effects and intersubband excitations in multiple quantum well structures. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 28-34.	2.7	10
246	Space charge buildup in quantum-well infrared photodetectors leading to low-power nonlinear photoresponse. IEEE Photonics Technology Letters, 1998, 10, 1470-1472.	2.5	18
247	Noise gain and detectivity of n-type GaAs/AlAs/AlGaAs quantum well infrared photodetectors. Applied Physics Letters, 1998, 73, 1251-1253.	3.3	31
248	Optically induced electric-field domains by bound-to-continuum transitions inn-type multiple quantum wells. Physical Review B, 1998, 57, R15096-R15099.	3.2	23
249	III-V semiconductor quantum well and superlattice detectors. , 1998, 3436, 348.		9
250	Electric Field Distribution and Low Power Nonlinear Photo-Response of Quantum Well Infrared Photodetectros., 1998,, 60-67.		3
251	Low-power photocurrent nonlinearity in quantum well infrared detectors. Applied Physics Letters, 1997, 71, 2011-2013.	3.3	19
252	High-speed infrared detection by uncooled photovoltaic quantum well infrared photodetectors. Applied Physics Letters, 1997, 70, 1602-1604.	3.3	33

#	Article	IF	CITATIONS
253	Ultrafast intersubband photocurrent response in quantum-well infrared photodetectors. Applied Physics Letters, 1997, 71, 641-643.	3.3	25
254	Photovoltaic quantum well infrared photodetectors: The four-zone scheme. Applied Physics Letters, 1997, 71, 246-248.	3.3	63
255	<title>Dynamical aspects of carrier transport in quantum well intersubband photodetectors</title> ., 1997,,.		O
256	Franz–Keldysh oscillations at the miniband edge in a GaAs/AlxGa1 â^'xAs superlattice. Superlattices and Microstructures, 1997, 22, 459-465.	3.1	4
257	Coupling effects observed in the intersubband photocurrent of photovoltaic doubleâ€barrier quantumâ€well infrared detectors. Journal of Applied Physics, 1996, 79, 9369-9374.	2.5	5
258	<title>Photocurrent anomaly in double-barrier quantum well structures</title> ., 1996,,.		0
259	Capture dynamics and far-infrared response in photovoltaic quantum well intersubband photodetectors. Superlattices and Microstructures, 1996, 19, 347-356.	3.1	22
260	Electron capture in AlGaAs/AlAs/GaAs double-barrier quantum well structures: Tunneling versus intervalley scattering. Solid-State Electronics, 1996, 40, 133-137.	1.4	4
261	A 10 ν m GaAs/AlxGa1â^xAs intersubband photodetector operating at zero bias voltage. Applied Physics Letters, 1996, 68, 973-975.	3.3	33
262	Voltageâ€tunable twoâ€color detection by interband and intersubband transitions in a pâ€iâ€nâ€iâ€n structure. Applied Physics Letters, 1996, 68, 1832-1834.	3.3	11
263	Analysis of the transport mechanism in GaAs/AlGaAs quantumâ€well infrared photodetection structures using time resolved photocurrent measurements. Applied Physics Letters, 1996, 69, 931-933.	3.3	28
264	Resonance fluorescence and polariton effects in GaAs thin layers. Physical Review B, 1995, 52, R14364-R14367.	3.2	3
265	Intrinsic radiative lifetimes of donor-acceptor pair excitations in diamond. Physical Review B, 1995, 51, 16677-16680.	3.2	17
266	Picosecond spectroscopy of optically modulated highâ€speed laser diodes. Applied Physics Letters, 1995, 67, 1809-1811.	3.3	6
267	Tunneling assisted thermionic emission in doubleâ€barrier quantum well structures. Journal of Applied Physics, 1995, 77, 2537-2543.	2.5	5
268	Coexistence of the Franz-Keldysh and Wannier-Stark effect in semiconductor superlattices. Physical Review B, 1995, 52, 17352-17365.	3.2	32
269	Formation and decay dynamics of excitonic photoluminescence in a GaAs/AlGaAs superlattice under an electric field. Applied Physics Letters, 1995, 66, 905-907.	3.3	4
270	Electric-field effects on above-barrier states in a GaAs/AlxGa1â^'xAs superlattice. Physical Review B, 1995, 51, 4236-4241.	3.2	14

#	Article	IF	CITATIONS
271	Field dependence of carrier capture in GaAs/AlAs/AlGaAs double-barrier quantum well structures. Semiconductor Science and Technology, 1995, 10, 1329-1338.	2.0	6
272	Gain switching in highâ€speed semiconductor lasers: Intermediateâ€signal analysis. Applied Physics Letters, 1994, 65, 661-663.	3.3	5
273	Highâ€speed characterization ofpâ€iâ€nphotodetectors by nonlinear photocurrent spectroscopy. Applied Physics Letters, 1994, 65, 613-615.	3.3	0
274	Photon echoes and free-polarization decay in GaAs/AlAs multiple quantum wells: Polarization and time dependence. Physical Review B, 1994, 49, 17050-17054.	3.2	20
275	Coexistence of Wannier-Stark transitions and miniband Franz-Keldysh oscillations in strongly coupled GaAs-AlAs superlattices. Physical Review Letters, 1994, 72, 2769-2772.	7.8	39
276	Capture of carriers excited by interband and intersubband absorption in GaAs/AlAs/AlGaAs double-barrier quantum wells. Superlattices and Microstructures, 1994, 16, 331-334.	3.1	5
277	Excitonic enhancement of the Fermi edge singularity and recombination kinetics of photogenerated electrons in p-type δ-doped GaAs:Be/AlxGa1â˜xAs double-heterostructures. Solid-State Electronics, 1994, 37, 871-875.	1.4	4
278	Resonant quenching of exciton photoluminescence in coupled GaAs/AlAs quantum wells: Effect of exciton binding energy. Solid-State Electronics, 1994, 37, 881-884.	1.4	5
279	Modulation of Wannier-Stark transitions by miniband Franz-Keldysh oscillations in strongly coupled GaAs-AlAs superlattices. Solid-State Electronics, 1994, 37, 1337-1340.	1.4	4
280	Influences of MBE growth processes on photovoltaic 3-5 /spl mu/m intersubband photodetectors. IEEE Transactions on Electron Devices, 1994, 41, 511-518.	3.0	33
281	Nonresonant electron capture in GaAs/AlAs/AlGaAs doubleâ€barrier quantum well infrared detectors. Applied Physics Letters, 1994, 64, 1015-1017.	3.3	4
282	A Novel Transport Mechanism for Photovoltaic Quantum well Intersubband Infrared Detectors. , 1994, , 187-196.		2
283	Strain-relaxed, high-speed In0.2Ga0.8As MQW p-i-n photodetectors grown by MBE. Journal of Crystal Growth, 1993, 127, 62-67.	1.5	10
284	Photocurrent and Raman spectroscopy of Stark ladder superlattices with single monolayer AlAs barriers. Journal of Crystal Growth, 1993, 127, 836-840.	1.5	1
285	Exciton effects in sequential resonant tunneling of photocarriers in GaAs/AlAs multiple quantum wells. Physical Review B, 1993, 48, 11051-11056.	3.2	5
286	Optimized performance of quantum well intersubband infrared detectors: Photovoltaic versus photoconductive operation. Journal of Applied Physics, 1993, 74, 4789-4791.	2.5	22
287	Two-dimensional hole gas and Fermi-edge singularity in Be δ-doped GaAs. Physical Review B, 1993, 47, 9629-9640.	3.2	36
288	Strain relaxation in highâ€speedpâ€iâ€nphotodetectors with In0.2Ga0.8As/GaAs multiple quantum wells. Applied Physics Letters, 1993, 63, 2920-2922.	3.3	15

#	Article	IF	CITATIONS
289	Spaceâ€charge effects in photovoltaic double barrier quantum well infrared detectors. Applied Physics Letters, 1993, 63, 782-784.	3.3	32
290	Observation of extremely long electron-spin-relaxation times inp-type δ-doped GaAs/AlxGa1â^'xAs double heterostructures. Physical Review B, 1993, 47, 4786-4789.	3.2	78
291	Line shape of electroreflectance spectra in semiconductor superlattices. Physical Review B, 1993, 48, 11827-11832.	3.2	5
292	Transport asymmetry and photovoltaic response in (AlGa)As/AlAs/GaAs/(AlGa)As singleâ€barrier quantumâ€well infrared detectors. Applied Physics Letters, 1992, 60, 1471-1473.	3.3	16
293	Franz-Keldysh oscillations and Wannier-Stark localization in GaAs/AlAs superlattices with single-monolayer AlAs barriers. Physical Review B, 1992, 45, 6329-6332.	3.2	35
294	Diffusive electrical conduction in highâ€speedpâ€iâ€nphotodetectors. Applied Physics Letters, 1992, 60, 2648-2650.	3.3	18
295	Novel molecular-beam epitaxially grown GaAs/AlGaAs quantum well structures for infrared detection and integrated optics at 3–5 and 8–12 μm. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1992, 10, 998.	1.6	6
296	Twoâ€color GaAs/(AlGa)As quantum well infrared detector with voltageâ€tunable spectral sensitivity at 3–5 and 8–12 ξm. Applied Physics Letters, 1992, 61, 666-668.	3.3	49
297	<title>Interaction of Wannier-Stark ladders in GaAs-AlAs superlattices observed by electroreflectance</title> ., 1992, , .		0
298	<title>Franz-Keldysh oscillations and Wannier-Stark localization in GaAs/AlAs superlattices</title> ., 1992,,.		0
299	Multiply resonant Raman scattering in Stark ladder superlattices. Surface Science, 1992, 263, 531-535.	1.9	1
300	Electric field-induced delocalization effects in GaAs/AlAs single- and double-period superlattices. Surface Science, 1992, 267, 497-500.	1.9	0
301	Photovoltaic Intersubband Photodetectors Using GaAs Quantum Wells Confined by AlAs Tunnel Barriers. NATO ASI Series Series B: Physics, 1992, , 73-81.	0.2	0
302	Intersubband absorption and infrared photodetection at 3.5 and 4.2 \hat{l} 4m in GaAs quantum wells. Applied Physics Letters, 1991, 58, 2234-2236.	3.3	95
303	Roomâ€temperature enhancement of electroâ€optical modulation by resonanceâ€induced exciton mixing in a GaAs/AlAs superlattice. Applied Physics Letters, 1991, 58, 1994-1996.	3.3	9
304	Stark localization and resonance-induced delocalization of electrons in GaAs/AlAs superlattices. Superlattices and Microstructures, 1991, 9, 87-90.	3.1	3
305	Photovoltaic intersubband detectors for 3-5 mu m using GaAs quantum wells sandwiched between AlAs tunnel barriers. Semiconductor Science and Technology, 1991, 6, C120-C123.	2.0	27
306	Stark localization of a pair of coupled minibands in a GaAs/AlAs double-period superlattice. Physical Review B, 1991, 44, 5943-5946.	3.2	29

#	Article	IF	Citations
307	Far-infrared emission by resonant-polaron effects in narrow-band-gapHg1â^'xCdxTe. Physical Review Letters, 1991, 67, 1310-1313.	7.8	9
308	<title>Miniband transport in GaAs-AlAs superlattices</title> ., 1990, , .		1
309	Triply resonant Raman scattering by LO phonons in a Wannier-Stark ladder. Physical Review B, 1990, 42, 11430-11433.	3.2	11
310	Resonance-induced delocalization of electrons in GaAs-AlAs superlattices. Physical Review Letters, 1990, 65, 2720-2723.	7.8	108
311	Optical studies of electric field domains in GaAs-AlxGa1â^'xAs superlattices. Physical Review B, 1990, 41, 2890-2899.	3.2	99
312	<title>Optical detection of resonant tunneling in GaAs/AlAs superlattices</title> ., 1990, 1283, 130.		0
313	Nonthermal occupation of higher subbands in semiconductor superlattices via sequential resonant tunneling. Physical Review Letters, 1990, 64, 2426-2429.	7.8	87
314	Electroâ€optical multistability in GaAs/AlAs superlattices at room temperature. Applied Physics Letters, 1990, 56, 605-607.	3.3	68
315	Spatial distribution of high-field domains in GaAsî—¸AlAs superlattices. Surface Science, 1990, 228, 84-87.	1.9	3
316	Tunneling resonances and miniband conduction in superlattices. Surface Science, 1990, 228, 362-369.	1.9	11
317	Sequential resonant tunneling of holes in GaAs-AlAs superlattices. Physical Review B, 1989, 40, 10040-10043.	3.2	31
318	Optical detection of highâ€field domains in GaAs/AlAs superlattices. Applied Physics Letters, 1989, 54, 1757-1759.	3.3	55
319	Resonant and non-resonant tunneling in multi quantum well structures. Superlattices and Microstructures, 1989, 5, 383-396.	3.1	67
320	Successive Wannier-Stark localization and excitonic enhancement of intersubband absorption in a short-period GaAs/AlAs superlattice. Solid State Communications, 1989, 72, 935-939.	1.9	35
321	Electrical and optical timeâ€ofâ€flight experiments in GaAs/AlAs superlattices. Applied Physics Letters, 1989, 54, 2656-2658.	3.3	34
322	Resonant Tunnelling and Miniband Conduction in GaAs/AlAs Superlattices Studied by Electrical Time-Of-Flight Techniques. Europhysics Letters, 1989, 8, 575-580.	2.0	36
323	Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1â^'xAs multiple-quantum-well structure. Physical Review B, 1988, 38, 6160-6165.	3.2	299
324	Integrable relativistic N-particle systems in an external potential. Physica D: Nonlinear Phenomena, 1987, 26, 203-209.	2.8	14

#	Article	IF	CITATIONS
325	TIME RESOLVED VERTICAL TRANSPORT IN GaAs/AL _x Ga _{1-x} As SUPERLATTICES. Journal De Physique Colloque, 1987, 48, C5-431-C5-434.	0.2	1
326	A new class of integrable systems and its relation to solitons. Annals of Physics, 1986, 170, 370-405.	2.8	369
327	Exciton Impact Ionization and Electric Conductivity in Germanium at Low Temperature. Physica Status Solidi (B): Basic Research, 1985, 129, 687-695.	1.5	8
328	Photoluminescence and electric conductivity in germanium at low temperatures. European Physical Journal B, 1985, 61, 101-111.	1.5	5
329	Quantum Cascade Lasers for the Mid-infrared Spectral Range: Devices and Applications. Advances in Solid State Physics, 0, , 351-368.	0.8	23
330	Terahertz-Induced Energy Transfer from Hot Carriers to Trions in a MoSe2 Monolayer. ACS Photonics, 0, , .	6.6	9