Harald Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6252857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new class of integrable systems and its relation to solitons. Annals of Physics, 1986, 170, 370-405.	2.8	369
2	Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1â^'xAs multiple-quantum-well structure. Physical Review B, 1988, 38, 6160-6165.	3.2	299
3	Carrier Relaxation in Epitaxial Graphene Photoexcited Near the Dirac Point. Physical Review Letters, 2011, 107, 237401.	7.8	269
4	Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning. Physical Review A, 2008, 77, .	2.5	184
5	Ultrafast graphene-based broadband THz detector. Applied Physics Letters, 2013, 103, .	3.3	174
6	Mode-locked pulses from mid-infrared Quantum Cascade Lasers. Optics Express, 2009, 17, 12929.	3.4	168
7	High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter. Scientific Reports, 2016, 6, 22256.	3.3	121
8	Observation of the Intraexciton Autler-Townes Effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>GaAs</mml:mi><mml:mo>/</mml:mo><mml:mi>AlGaAs</mml:mi>Semic Quantum Wells. Physical Review Letters, 2010, 105, 167401.</mml:math 	0.8 onductor	113
9	Resonance-induced delocalization of electrons in GaAs-AlAs superlattices. Physical Review Letters, 1990, 65, 2720-2723.	7.8	108
10	Demonstration of a Broadband Photodetector Based on a Twoâ€Dimensional Metal–Organic Framework. Advanced Materials, 2020, 32, e1907063.	21.0	103
11	Optical studies of electric field domains in GaAs-AlxGa1â^'xAs superlattices. Physical Review B, 1990, 41, 2890-2899.	3.2	99
12	Intersubband absorption and infrared photodetection at 3.5 and 4.2 μm in GaAs quantum wells. Applied Physics Letters, 1991, 58, 2234-2236.	3.3	95
13	Nonthermal occupation of higher subbands in semiconductor superlattices via sequential resonant tunneling. Physical Review Letters, 1990, 64, 2426-2429.	7.8	87
14	Carrier dynamics in Landau-quantized graphene featuring strong Auger scattering. Nature Physics, 2015, 11, 75-81.	16.7	79
15	Room-temperature short-wavelength infrared Si photodetector. Scientific Reports, 2017, 7, 43688.	3.3	79
16	Observation of extremely long electron-spin-relaxation times inp-type δ-doped GaAs/AlxGa1â^'xAs double heterostructures. Physical Review B, 1993, 47, 4786-4789.	3.2	78
17	Widely tunable GaAs bandgap via strain engineering in core/shell nanowires with large lattice mismatch. Nature Communications, 2019, 10, 2793.	12.8	78
18	Anisotropy of Excitation and Relaxation of Photogenerated Charge Carriers in Graphene. Nano Letters, 2014, 14, 1504-1507.	9.1	77

#	Article	IF	CITATIONS
19	Electroâ€optical multistability in GaAs/AlAs superlattices at room temperature. Applied Physics Letters, 1990, 56, 605-607.	3.3	68
20	Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas. Optics Express, 2009, 17, 1571.	3.4	68
21	Resonant and non-resonant tunneling in multi quantum well structures. Superlattices and Microstructures, 1989, 5, 383-396.	3.1	67
22	Photovoltaic quantum well infrared photodetectors: The four-zone scheme. Applied Physics Letters, 1997, 71, 246-248.	3.3	63
23	Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior. Journal of Physics Condensed Matter, 2013, 25, 054202.	1.8	59
24	Generation of subpicosecond infrared pulses tunable between 5.2 l̂¼m and 18 l̂¼m at a repetition rate of 76 MHz. Applied Physics B: Lasers and Optics, 1998, 66, 27-30.	2.2	58
25	QWIP FPAs for high-performance thermal imaging. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 101-107.	2.7	56
26	Optical detection of highâ€field domains in GaAs/AlAs superlattices. Applied Physics Letters, 1989, 54, 1757-1759.	3.3	55
27	Intersublevel Spectroscopy on Single InAs-Quantum Dots by Terahertz Near-Field Microscopy. Nano Letters, 2012, 12, 4336-4340.	9.1	51
28	Two olor GaAs/(AlGa)As quantum well infrared detector with voltageâ€ŧunable spectral sensitivity at 3–5 and 8–12 μm. Applied Physics Letters, 1992, 61, 666-668.	3.3	49
29	Plasmonic Superlensing in Doped GaAs. Nano Letters, 2015, 15, 1057-1061.	9.1	48
30	Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams. New Journal of Physics, 2012, 14, 103049.	2.9	47
31	Influence of optical interference on quantum well infrared photodetectors in a 45° waveguide geometry. Applied Physics Letters, 1999, 74, 16-18.	3.3	45
32	Extended Infrared Photoresponse in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mi>Te</mml:mi></mml:math> -Hyperdoped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>Si</mml:mi>at Room Temperature. Physical Review Applied,</mml:math 	3.8	45
33	2018, 10, . Effective Hexagonal Boron Nitride Passivation of Few-Layered InSe and GaSe to Enhance Their Electronic and Optical Properties. ACS Applied Materials & Interfaces, 2019, 11, 43480-43487.	8.0	44
34	Generation and Detection of THz Radiation With Scalable Antennas Based on GaAs Substrates With Different Carrier Lifetimes. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 449-457.	2.9	41
35	Slow Noncollinear Coulomb Scattering in the Vicinity of the Dirac Point in Graphene. Physical Review Letters, 2016, 117, 087401.	7.8	40
36	Coexistence of Wannier-Stark transitions and miniband Franz-Keldysh oscillations in strongly coupled GaAs-AlAs superlattices. Physical Review Letters, 1994, 72, 2769-2772.	7.8	39

#	Article	IF	CITATIONS
37	Ten years of QWIP development at Fraunhofer IAF. Infrared Physics and Technology, 2001, 42, 283-289.	2.9	38
38	Mode-locked short pulses from an 8Âμm wavelength semiconductor laser. Nature Communications, 2020, 11, 5788.	12.8	37
39	Up to 70 THz bandwidth from an implanted Ge photoconductive antenna excited by a femtosecond Er:fibre laser. Light: Science and Applications, 2020, 9, 30.	16.6	37
40	Resonant Tunnelling and Miniband Conduction in GaAs/AlAs Superlattices Studied by Electrical Time-Of-Flight Techniques. Europhysics Letters, 1989, 8, 575-580.	2.0	36
41	Two-dimensional hole gas and Fermi-edge singularity in Be δ-doped GaAs. Physical Review B, 1993, 47, 9629-9640.	3.2	36
42	Coherent terahertz detection with a large-area photoconductive antenna. Applied Physics Letters, 2007, 91, .	3.3	36
43	Successive Wannier-Stark localization and excitonic enhancement of intersubband absorption in a short-period GaAs/AlAs superlattice. Solid State Communications, 1989, 72, 935-939.	1.9	35
44	Franz-Keldysh oscillations and Wannier-Stark localization in GaAs/AlAs superlattices with single-monolayer AlAs barriers. Physical Review B, 1992, 45, 6329-6332.	3.2	35
45	Electrical and optical timeâ€ofâ€flight experiments in GaAs/AlAs superlattices. Applied Physics Letters, 1989, 54, 2656-2658.	3.3	34
46	Study of lifetimes and photoconductivity relaxation in heterostructures with Hg x Cd1 â^' x Te/Cd y Hg1 âr' y Te quantum wells. Semiconductors, 2012, 46, 1362-1366.	0.5	34
47	Influences of MBE growth processes on photovoltaic 3-5 /spl mu/m intersubband photodetectors. IEEE Transactions on Electron Devices, 1994, 41, 511-518.	3.0	33
48	A 10 μm GaAs/AlxGa1â^'xAs intersubband photodetector operating at zero bias voltage. Applied Physics Letters, 1996, 68, 973-975.	3.3	33
49	High-speed infrared detection by uncooled photovoltaic quantum well infrared photodetectors. Applied Physics Letters, 1997, 70, 1602-1604.	3.3	33
50	Third-generation focal plane array IR detection modules and applications. , 2004, 5406, 184.		33
51	Spaceâ€charge effects in photovoltaic double barrier quantum well infrared detectors. Applied Physics Letters, 1993, 63, 782-784.	3.3	32
52	Coexistence of the Franz-Keldysh and Wannier-Stark effect in semiconductor superlattices. Physical Review B, 1995, 52, 17352-17365.	3.2	32
53	Gouy phase shift of a tightly focused, radially polarized beam. Optica, 2016, 3, 35.	9.3	32
54	Sequential resonant tunneling of holes in GaAs-AlAs superlattices. Physical Review B, 1989, 40, 10040-10043.	3.2	31

#	Article	IF	CITATIONS
55	Noise gain and detectivity of n-type GaAs/AlAs/AlGaAs quantum well infrared photodetectors. Applied Physics Letters, 1998, 73, 1251-1253.	3.3	31
56	Gapless Broadband Terahertz Emission from a Germanium Photoconductive Emitter. ACS Photonics, 2018, 5, 2718-2723.	6.6	30
57	Stark localization of a pair of coupled minibands in a GaAs/AlAs double-period superlattice. Physical Review B, 1991, 44, 5943-5946.	3.2	29
58	Semiconductor quantum well excitons in strong, narrowband terahertz fields. New Journal of Physics, 2013, 15, 065007.	2.9	29
59	Analysis of the transport mechanism in GaAs/AlGaAs quantumâ€well infrared photodetection structures using time resolved photocurrent measurements. Applied Physics Letters, 1996, 69, 931-933.	3.3	28
60	Improvement of λâ‰^5 μm quantum cascade lasers by blocking barriers in the active regions. Applied Phys Letters, 2002, 80, 2048-2050.	ics 3.3	28
61	Dual-band QWIP focal plane array for the second and third atmospheric windows. Infrared Physics and Technology, 2005, 47, 53-58.	2.9	28
62	High electron mobility in strained GaAs nanowires. Nature Communications, 2021, 12, 6642.	12.8	28
63	Photovoltaic intersubband detectors for 3-5 mu m using GaAs quantum wells sandwiched between AlAs tunnel barriers. Semiconductor Science and Technology, 1991, 6, C120-C123.	2.0	27
64	Fano Signatures in the Intersubband Terahertz Response of Optically Excited Semiconductor Quantum Wells. Physical Review Letters, 2009, 102, 127403.	7.8	27
65	Observation of Forbidden Exciton Transitions Mediated by Coulomb Interactions in Photoexcited Semiconductor Quantum Wells. Physical Review Letters, 2013, 110, 137404.	7.8	27
66	Decoupling the Two Roles of Ga Droplets in the Self-Catalyzed Growth of GaAs Nanowires on SiO _{<i>x</i>} /Si(111) Substrates. Crystal Growth and Design, 2017, 17, 5276-5282.	3.0	26
67	Carrier Dynamics in Graphene: Ultrafast Manyâ€Particle Phenomena. Annalen Der Physik, 2017, 529, 1700038.	2.4	26
68	Ultrafast intersubband photocurrent response in quantum-well infrared photodetectors. Applied Physics Letters, 1997, 71, 641-643.	3.3	25
69	Ultrasensitive femtosecond two-photon detector with resonantly enhanced nonlinear absorption. Optics Letters, 2005, 30, 287.	3.3	25
70	Femtosecond pump-probe spectroscopy of intersubband relaxation dynamics in narrow InGaAsâ^•AlAsSb quantum well structures. Applied Physics Letters, 2006, 89, 171104.	3.3	25
71	Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure. Nanotechnology, 2013, 24, 214007.	2.6	25
72	Four-Wave Mixing in Landau-Quantized Graphene. Nano Letters, 2017, 17, 2184-2188.	9.1	25

#	Article	IF	CITATIONS
73	Terahertz two-photon quantum well infrared photodetector. Optics Express, 2009, 17, 12279.	3.4	24
74	Optically induced electric-field domains by bound-to-continuum transitions inn-type multiple quantum wells. Physical Review B, 1998, 57, R15096-R15099.	3.2	23
75	Quantum Cascade Lasers for the Mid-infrared Spectral Range: Devices and Applications. Advances in Solid State Physics, 0, , 351-368.	0.8	23
76	Quantitative determination of the charge carrier concentration of ion implanted silicon by IR-near-field spectroscopy. Optics Express, 2010, 18, 26206.	3.4	23
77	Simultaneous time and wavelength resolved spectroscopy under two-colour near infrared and terahertz excitation. Review of Scientific Instruments, 2011, 82, 103107.	1.3	23
78	Universal ultrafast detector for short optical pulses based on graphene. Optics Express, 2015, 23, 28728.	3.4	23
79	Optimized performance of quantum well intersubband infrared detectors: Photovoltaic versus photoconductive operation. Journal of Applied Physics, 1993, 74, 4789-4791.	2.5	22
80	Capture dynamics and far-infrared response in photovoltaic quantum well intersubband photodetectors. Superlattices and Microstructures, 1996, 19, 347-356.	3.1	22
81	Noise current investigations of g–r noise limited and shot noise limited QWIPs. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 124-129.	2.7	22
82	Resonant two-photon photoemission in quantum-well infrared photodetectors. Applied Physics Letters, 2004, 84, 5162-5164.	3.3	22
83	Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells. Applied Physics Letters, 2009, 94, 241105.	3.3	22
84	Intracavity third-harmonic generation in Si:B pumped by intense terahertz pulses. Physical Review B, 2020, 102, .	3.2	21
85	Enhanced Trion Emission in Monolayer MoSe ₂ by Constructing a Type″ Van Der Waals Heterostructure. Advanced Functional Materials, 2021, 31, 2104960.	14.9	21
86	Photon echoes and free-polarization decay in GaAs/AlAs multiple quantum wells: Polarization and time dependence. Physical Review B, 1994, 49, 17050-17054.	3.2	20
87	Third-generation focal plane array IR detection modules at AIM. , 2001, 4369, 547.		20
88	Droplet-Confined Alternate Pulsed Epitaxy of GaAs Nanowires on Si Substrates down to CMOS-Compatible Temperatures. Nano Letters, 2016, 16, 4032-4039.	9.1	20
89	Low-power photocurrent nonlinearity in quantum well infrared detectors. Applied Physics Letters, 1997, 71, 2011-2013.	3.3	19
90	Quadratic autocorrelation of free-electron laser radiation and photocurrent saturation in two-photon quantum well infrared photodetectors. Applied Physics Letters, 2006, 89, 133508.	3.3	19

#	ARTICLE	IF	CITATIONS
91	High-field splitting of the cyclotron resonance absorption in strained <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td>mm<mark>1:</mark>mtext</td><td>:>daAs</td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	mm <mark>1:</mark> mtext	:>daAs
92	wells. Physical Review B. 2009, 79 Nonthermal nature of photoinduced insulator-to-metal transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>NbO</mml:mi><mml:mn>2Physical Review B, 2019, 99, .</mml:mn></mml:msub></mml:math 	l:m a. 2 <td>nl:msub></td>	nl:msub>
93	Siliconâ€Based Intermediateâ€Band Infrared Photodetector Realized by Te Hyperdoping. Advanced Optical Materials, 2021, 9, 2001546.	7.3	19
94	Diffusive electrical conduction in highâ€speedpâ€iâ€nphotodetectors. Applied Physics Letters, 1992, 60, 2648-2650.	3.3	18
95	Space charge buildup in quantum-well infrared photodetectors leading to low-power nonlinear photoresponse. IEEE Photonics Technology Letters, 1998, 10, 1470-1472.	2.5	18
96	Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 <i>μ</i> m. Applied Physics Letters, 2013, 103, .	3.3	18
97	A Twoâ€Dimensional Polyimideâ€Graphene Heterostructure with Ultraâ€fast Interlayer Charge Transfer. Angewandte Chemie - International Edition, 2021, 60, 13859-13864.	13.8	18
98	Intrinsic radiative lifetimes of donor-acceptor pair excitations in diamond. Physical Review B, 1995, 51, 16677-16680.	3.2	17
99	Intraband carrier dynamics in Landau-quantized multilayer epitaxial graphene. New Journal of Physics, 2014, 16, 123021.	2.9	17
100	Improved electrode design for interdigitated large-area photoconductive terahertz emitters. Optics Express, 2019, 27, 13108.	3.4	17
101	Transport asymmetry and photovoltaic response in (AlGa)As/AlAs/GaAs/(AlGa)As singleâ€barrier quantumâ€well infrared detectors. Applied Physics Letters, 1992, 60, 1471-1473.	3.3	16
102	Low-noise QWIPs for FPA sensors with high thermal resolution. , 2000, 4130, 353.		16
103	Avalanche multiplication due to impact ionization in quantum-well infrared photodetectors: A quantitative approach. Applied Physics Letters, 2003, 82, 2907-2909.	3.3	16
104	Theory of avalanche multiplication and excess noise in quantum-well infrared photodetectors. Applied Physics Letters, 2003, 82, 4376-4378.	3.3	16
105	Two-photon photocurrent spectroscopy of electron intersubband relaxation and dephasing in quantum wells. Applied Physics Letters, 2007, 91, .	3.3	16
106	Photoluminescence dynamics in GaAs/AlGaAs quantum wells under pulsed intersubband excitation. Applied Physics Letters, 2011, 99, .	3.3	16
107	Systematic investigation of terahertz-induced excitonic Rabi splitting. Physical Review B, 2014, 89, .	3.2	16
108	Infrared nanoscopy down to liquid helium temperatures. Review of Scientific Instruments, 2018, 89, 033702.	1.3	16

#	Article	IF	CITATIONS
109	Strain relaxation in highâ€speedpâ€iâ€nphotodetectors with In0.2Ga0.8As/GaAs multiple quantum wells. Applied Physics Letters, 1993, 63, 2920-2922.	3.3	15
110	Influence of the recharging process on the dark current noise in quantum-well infrared photodetectors. Applied Physics Letters, 2002, 80, 862-864.	3.3	15
111	Compact magnetospectrometer for pulsed magnets based on infrared quantum cascade lasers. Review of Scientific Instruments, 2011, 82, 033108.	1.3	15
112	Plasmonic efficiency enhancement at the anode of strip line photoconductive terahertz emitters. Optics Express, 2016, 24, 22628.	3.4	15
113	Low-temperature intracenter relaxation times of shallow donors in germanium. JETP Letters, 2017, 106, 571-575.	1.4	15
114	A simple route to synchronized nucleation of self-catalyzed GaAs nanowires on silicon for sub-Poissonian length distributions. Nanotechnology, 2018, 29, 504004.	2.6	15
115	Ultrafast response of photoexcited carriers in VO ₂ at high-pressure. New Journal of Physics, 2018, 20, 083003.	2.9	15
116	Exciton localization in MoSe2monolayers induced by adsorbed gas molecules. Applied Physics Letters, 2019, 114, 172106.	3.3	15
117	Integrable relativistic N-particle systems in an external potential. Physica D: Nonlinear Phenomena, 1987, 26, 203-209.	2.8	14
118	Electric-field effects on above-barrier states in a GaAs/AlxGa1â^'xAs superlattice. Physical Review B, 1995, 51, 4236-4241.	3.2	14
119	Role of Transient Reflection in Graphene Nonlinear Infrared Optics. ACS Photonics, 2016, 3, 1069-1075.	6.6	14
120	Investigation of an Opposed-Contact GaAs Photoconductive Semiconductor Switch at 1-kHz Excitation. IEEE Transactions on Electron Devices, 2021, 68, 2355-2359.	3.0	14
121	Photoluminescence dynamics in few-layer InSe. Physical Review Materials, 2020, 4, .	2.4	14
122	High-resolution QWIP FPAs for the 8- to $12-\hat{l}^{1}/4$ m and 3- to $5-\hat{l}^{1}/4$ m regimes. , 2003, 4820, 297.		13
123	Room-temperature midinfrared two-photon photodetector. Applied Physics Letters, 2008, 93, .	3.3	13
124	Determination of the electron capture time in quantum-well infrared photodetectors using time-resolved photocurrent measurements. Applied Physics Letters, 2003, 82, 3925-3927.	3.3	12
125	Mid-infrared pump-related electric-field domains in GaAs/(Al,Ga)As quantum-cascade structures for terahertz lasing without population inversion. Journal of Applied Physics, 2011, 110, 103104.	2.5	12
126	High-Temperature Photon-Noise-Limited Performance Terahertz Quantum-Well Photodetectors. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 715-724.	3.1	12

#	Article	IF	CITATIONS
127	Two-photon quantum well infrared photodetectors below 6 THz. Infrared Physics and Technology, 2015, 70, 30-33.	2.9	12
128	First Terahertz-range Experiments on Pump – Probe Setup at Novosibirsk free Electron Laser. Physics Procedia, 2016, 84, 152-156.	1.2	12
129	Nonlinear Charge Transport in InGaAs Nanowires at Terahertz Frequencies. Nano Letters, 2020, 20, 3225-3231.	9.1	12
130	Giant impact of self-photothermal on light-induced ultrafast insulator-to-metal transition in VO ₂ nanofilms at terahertz frequency. Optics Express, 2018, 26, 28051.	3.4	12
131	Triply resonant Raman scattering by LO phonons in a Wannier-Stark ladder. Physical Review B, 1990, 42, 11430-11433.	3.2	11
132	Tunneling resonances and miniband conduction in superlattices. Surface Science, 1990, 228, 362-369.	1.9	11
133	Voltageâ€ŧunable twoâ€color detection by interband and intersubband transitions in a pâ€iâ€nâ€iâ€n structure. Applied Physics Letters, 1996, 68, 1832-1834.	3.3	11
134	<title>Responsivity and gain in InGaAs/GaAs-QWIPs and GaAs/AlGaAs-QWIPs: a comparative study</title> . , 2001, 4288, 379.		11
135	High-resolution 3–5â€[micro sign]mâ^•8–12â€[micro sign]m dual-band quantum well infrared photodeted array. Electronics Letters, 2004, 40, 831.	etor 1.0	11
136	High responsivity, dual-band response and intraband avalanche multiplication in InGaAs/InP quantum well photodetectors. Semiconductor Science and Technology, 2004, 19, 442-445.	2.0	11
137	Master equation approach of classical noise in intersubband detectors. Physical Review B, 2012, 85, .	3.2	11
138	Strain-relaxed, high-speed In0.2Ga0.8As MQW p-i-n photodetectors grown by MBE. Journal of Crystal Growth, 1993, 127, 62-67.	1.5	10
139	Ballistic effects and intersubband excitations in multiple quantum well structures. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 28-34.	2.7	10
140	Swept away [quantum-well infrared photodetectors]. IEEE Circuits and Devices: the Magazine of Electronic and Photonic Systems, 2003, 19, 9-16.	0.4	10
141	Third generation focal plane array IR detection modules and applications (Invited Paper). , 2005, , .		10
142	Autocorrelation measurements of free-electron laser radiation using a two-photon QWIP. Infrared Physics and Technology, 2007, 50, 95-99.	2.9	10
143	Ultrafast carrier capture in InGaAs quantum posts. Applied Physics Letters, 2009, 95, .	3.3	10
144	Ultrafast Processes in Graphene: From Fundamental Manybody Interactions to Device Applications. Annalen Der Physik, 2017, 529, 1700022.	2.4	10

#	Article	IF	CITATIONS
145	Symmetry-Breaking Supercollisions in Landau-Quantized Graphene. Physical Review Letters, 2017, 119, 067405.	7.8	10
146	Enhanced photoresponses of an optically driven VO2-based terahertz wave modulator near percolation threshold. Applied Physics Letters, 2018, 113, .	3.3	10
147	Absorption edge, urbach tail, and electron-phonon interactions in topological insulator Bi2Se3 and band insulator (Bi0.89In0.11)2Se3. Applied Physics Letters, 2019, 114, .	3.3	10
148	Nonlinear plasmonic response of doped nanowires observed by infrared nanospectroscopy. Nanotechnology, 2019, 30, 084003.	2.6	10
149	Roomâ€ŧemperature enhancement of electroâ€optical modulation by resonanceâ€induced exciton mixing in a GaAs/AlAs superlattice. Applied Physics Letters, 1991, 58, 1994-1996.	3.3	9
150	Far-infrared emission by resonant-polaron effects in narrow-band-gapHg1â^'xCdxTe. Physical Review Letters, 1991, 67, 1310-1313.	7.8	9
151	III-V semiconductor quantum well and superlattice detectors. , 1998, 3436, 348.		9
152	Domain pinning in GaAsâ^•AlGaAs quantum well infrared photodetectors. Applied Physics Letters, 2006, 88, 051114.	3.3	9
153	Intersubband relaxation dynamics in single and double quantum wells based on strained InGaAsâ^•AlAsâ^•AlAsSb. Applied Physics Letters, 2007, 91, .	3.3	9
154	Science at the Dresden High Magnetic Field Laboratory. AIP Conference Proceedings, 2008, , .	0.4	9
155	Terahertz emission from a large-area GalnAsN emitter. Applied Physics Letters, 2008, 93, 101102.	3.3	9
156	Terahertz activated luminescence of trapped carriers in InGaAs/GaAs quantum dots. Applied Physics Letters, 2010, 97, 031101.	3.3	9
157	Terahertz nonlinear optics using intraâ€excitonic quantum well transitions: Sideband generation and AC Stark splitting. Physica Status Solidi (B): Basic Research, 2011, 248, 859-862.	1.5	9
158	Direct determination of the electron effective mass of GaAsN by terahertz cyclotron resonance spectroscopy. Applied Physics Letters, 2015, 107, .	3.3	9
159	Dynamics of nonequilibrium electrons on neutral center states of interstitial magnesium donors in silicon. Physical Review B, 2016, 94, .	3.2	9
160	Electron dynamics in In _{<i>x</i>} Ga _{1â^'<i>x</i>} As shells around GaAs nanowires probed by terahertz spectroscopy. Nanotechnology, 2019, 30, 244004.	2.6	9
161	Terahertz-Induced Energy Transfer from Hot Carriers to Trions in a MoSe2 Monolayer. ACS Photonics, 0, , .	6.6	9
162	Exciton Impact Ionization and Electric Conductivity in Germanium at Low Temperature. Physica Status Solidi (B): Basic Research, 1985, 129, 687-695.	1.5	8

#	Article	IF	CITATIONS
163	Voltage-tunable, two-band mid-infrared detection based on Si/SiGe quantum-cascade injector structures. Applied Physics Letters, 2003, 83, 3879-3881.	3.3	8
164	Nearâ€roomâ€temperature photonâ€noiseâ€limited quantum well infrared photodetector. Laser and Photonics Reviews, 2014, 8, 297-302.	8.7	8
165	Dark current mechanism of terahertz quantum-well photodetectors. Journal of Applied Physics, 2014, 116, .	2.5	8
166	Single-pulse picking at kHz repetition rates using a Ge plasma switch at the free-electron laser FELBE. Review of Scientific Instruments, 2015, 86, 063103.	1.3	8
167	Dynamics of nonâ€equilibrium charge carriers in pâ€germanium doped by gallium. Physica Status Solidi (B): Basic Research, 2017, 254, 1600803.	1.5	8
168	Transient Characteristics of Interdigitated GaAs Photoconductive Semiconductor Switch at 1-kHz Excitation. IEEE Electron Device Letters, 2019, 40, 1136-1138.	3.9	8
169	Electron transport studies on In0.30Ga0.70As/GaAs-quantum-well infrared photodetectors using time-resolved photocurrent measurements. Applied Physics Letters, 2002, 81, 3401-3403.	3.3	7
170	Two-photon QWIPs for quadratic detection of weak mid-infrared laser pulses. Infrared Physics and Technology, 2005, 47, 182-187.	2.9	7
171	Quantum-well infrared photodetector with voltage-switchable quadratic and linear response. Applied Physics Letters, 2006, 88, 051117.	3.3	7
172	Two-photon photocurrent autocorrelation using intersubband transitions at nearly-resonant excitation. Optics Express, 2008, 16, 1523.	3.4	7
173	Quadratic detection with two-photon quantum well infrared photodetectors. Infrared Physics and Technology, 2009, 52, 419-423.	2.9	7
174	The cyclotron resonance of holes in InGaAs/GaAs heterostructures with quantum wells in quantizing magnetic fields. Semiconductors, 2010, 44, 1492-1494.	0.5	7
175	In-plane interdot carrier transfer in InAs/GaAs quantum dots. Applied Physics Letters, 2012, 100, 152101.	3.3	7
176	Doubly Dressed Bosons: Exciton Polaritons in a Strong Terahertz Field. Physical Review Letters, 2017, 119, 077403.	7.8	7
177	Novel molecular-beam epitaxially grown GaAs/AlGaAs quantum well structures for infrared detection and integrated optics at 3–5 and 8–12 μm. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1992, 10, 998.	1.6	6
178	Picosecond spectroscopy of optically modulated highâ€speed laser diodes. Applied Physics Letters, 1995, 67, 1809-1811.	3.3	6
179	Field dependence of carrier capture in GaAs/AlAs/AlGaAs double-barrier quantum well structures. Semiconductor Science and Technology, 1995, 10, 1329-1338.	2.0	6
180	<title>High-resolution focal plane array IR detection modules and digital signal processing</title>		6

<title>High-resolution focal plane array
technologies at AIM</title>., 2000, , .

#	Article	IF	CITATIONS
181	Measurements of non-Gaussian noise in quantum wells. Physical Review B, 2007, 76, .	3.2	6
182	Re-Examining the Doping Effect on the Performance of Quantum Well Infrared Photodetectors. IEEE Journal of Quantum Electronics, 2014, 50, 3-6.	1.9	6
183	Inter-sublevel dynamics in single InAs/GaAs quantum dots induced by strong terahertz excitation. Applied Physics Letters, 2016, 108, .	3.3	6
184	Photoluminescence and electric conductivity in germanium at low temperatures. European Physical Journal B, 1985, 61, 101-111.	1.5	5
185	Exciton effects in sequential resonant tunneling of photocarriers in GaAs/AlAs multiple quantum wells. Physical Review B, 1993, 48, 11051-11056.	3.2	5
186	Line shape of electroreflectance spectra in semiconductor superlattices. Physical Review B, 1993, 48, 11827-11832.	3.2	5
187	Gain switching in highâ€speed semiconductor lasers: Intermediateâ€signal analysis. Applied Physics Letters, 1994, 65, 661-663.	3.3	5
188	Capture of carriers excited by interband and intersubband absorption in GaAs/AlAs/AlGaAs double-barrier quantum wells. Superlattices and Microstructures, 1994, 16, 331-334.	3.1	5
189	Resonant quenching of exciton photoluminescence in coupled GaAs/AlAs quantum wells: Effect of exciton binding energy. Solid-State Electronics, 1994, 37, 881-884.	1.4	5
190	Tunneling assisted thermionic emission in doubleâ€barrier quantum well structures. Journal of Applied Physics, 1995, 77, 2537-2543.	2.5	5
191	Coupling effects observed in the intersubband photocurrent of photovoltaic doubleâ€barrier quantumâ€well infrared detectors. Journal of Applied Physics, 1996, 79, 9369-9374.	2.5	5
192	Photogalvanic effect in asymmetric quantum wells and superlattices. Superlattices and Microstructures, 1998, 23, 1289-1295.	3.1	5
193	Coherent carrier propagation in the continuum of asymmetric quantum-well structures. Physical Review B, 1999, 60, R13993-R13996.	3.2	5
194	Third gen focal plane array IR detection modules at AIM. Infrared Physics and Technology, 2002, 43, 257-263.	2.9	5
195	FELBE Free-Electron Laser: Status and Application for Time Resolved Spectroscopy Experiments. , 2006, ,		5
196	Inefficiency of intervalley transfer in narrow InGaAs/AlAsSb quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 229-231.	0.8	5
197	Magnetic control of Coulomb scattering and terahertz transitions among excitons. Physical Review B, 2014, 89, .	3.2	5

198 FELBE -Upgrades and Status of the IRITHz FEL User Facility at HZDR. , 2018, , .

5

#	Article	IF	CITATIONS
199	Plasmonic field guided patterning of ordered colloidal nanostructures. Nanophotonics, 2019, 8, 505-512.	6.0	5
200	Performance Investigation of Bulk Photoconductive Semiconductor Switch Based on Reversely Biased p ⁺ -i-n ⁺ Structure. IEEE Transactions on Electron Devices, 2020, 67, 4963-4969.	3.0	5
201	Excitonic enhancement of the Fermi edge singularity and recombination kinetics of photogenerated electrons in p-type δ-doped GaAs:Be/AlxGa1â xAs double-heterostructures. Solid-State Electronics, 1994, 37, 871-875.	1.4	4
202	Modulation of Wannier-Stark transitions by miniband Franz-Keldysh oscillations in strongly coupled GaAs-AlAs superlattices. Solid-State Electronics, 1994, 37, 1337-1340.	1.4	4
203	Nonresonant electron capture in GaAs/AlAs/AlGaAs doubleâ€barrier quantum well infrared detectors. Applied Physics Letters, 1994, 64, 1015-1017.	3.3	4
204	Formation and decay dynamics of excitonic photoluminescence in a GaAs/AlGaAs superlattice under an electric field. Applied Physics Letters, 1995, 66, 905-907.	3.3	4
205	Electron capture in AlGaAs/AlAs/GaAs double-barrier quantum well structures: Tunneling versus intervalley scattering. Solid-State Electronics, 1996, 40, 133-137.	1.4	4
206	Franz–Keldysh oscillations at the miniband edge in a GaAs/AlxGa1 â^'xAs superlattice. Superlattices and Microstructures, 1997, 22, 459-465.	3.1	4
207	Status of third-generation focal plane array IR detection modules at AIM. , 2003, , .		4
208	Intersublevel dephasing in InAs/GaAs quantum dots below the Reststrahlen band. Applied Physics Letters, 2013, 103, .	3.3	4
209	Lattice vibrations and electrical transport in (Bi1â^' <i>x</i> ln <i>x</i>)2Se3 films. Applied Physics Letters, 2016, 109, .	3.3	4
210	High–Bias–Field Operation of GaAs Photoconductive Terahertz Emitters. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42, 537-546.	2.2	4
211	High-field THz pulses from a GaAs photoconductive emitter for non-linear THz studies. Optics Express, 2021, 29, 19920.	3.4	4
212	Gold implanted germanium photoswitch for cavity dumping of a free-electron laser. Applied Physics Letters, 2021, 118, .	3.3	4
213	Terahertz control of photoluminescence emission in few-layer InSe. Applied Physics Letters, 2022, 120, .	3.3	4
214	Spatial distribution of high-field domains in GaAsî—,AlAs superlattices. Surface Science, 1990, 228, 84-87.	1.9	3
215	Stark localization and resonance-induced delocalization of electrons in GaAs/AlAs superlattices. Superlattices and Microstructures, 1991, 9, 87-90.	3.1	3
216	Resonance fluorescence and polariton effects in GaAs thin layers. Physical Review B, 1995, 52, R14364-R14367.	3.2	3

#	Article	IF	CITATIONS
217	Terahertz optical sideband emission in self-assembled quantum dots. Applied Physics Letters, 2010, 96, .	3.3	3
218	Modification to the central-cell correction of germanium acceptors. Physical Review B, 2011, 84, .	3.2	3
219	Characterizing intra-exciton Coulomb scattering in terahertz excitations. Applied Physics Letters, 2014, 105, 201109.	3.3	3
220	Electric Field Distribution and Low Power Nonlinear Photo-Response of Quantum Well Infrared Photodetectros. , 1998, , 60-67.		3
221	Non-plasmonic improvement in photoconductive THz emitters using nano- and micro-structured electrodes. Optics Express, 2020, 28, 35490.	3.4	3
222	Ultrafast phenomena and terahertz waves: introduction. Journal of the Optical Society of America B: Optical Physics, 2022, 39, UPT1.	2.1	3
223	<title>High-performance focal plane array modules for research and development</title> . , 2000, 4020, 257.		2
224	QWIP LWIR cameras with NETD<10 mK and improved low-frequency drift for long observation time in medicine and research. , 2002, 4721, 165.		2
225	Time-resolved electron transport studies on InGaAs/GaAs-QWIPs. Infrared Physics and Technology, 2003, 44, 355-361.	2.9	2
226	Infrared focal plane array based on MWIR/LWIR dual-band QWIPs: detector optimization and array properties. , 2005, , .		2
227	Leistungsstarke Emitter und einfach handhabbare Detektoren für die Terahertz-Time-Domain-Spektroskopie (Powerful Emitters and Easy-to-Use Detectors for) Tj ETQq1 1 0.784314 rg	B ō.¦O verla	oca 10 Tf 50
228	Two-color pump-probe studies of intraminiband relaxation in doped GaAsâ^•AlGaAs superlattices. Applied Physics Letters, 2008, 92, 051104.	3.3	2
229	Excitation wavelength dependence of phase matched terahertz emission from a GaAs slab. Optics Express, 2010, 18, 19574.	3.4	2
230	Terahertzâ€induced effects on excitons in magnetic field. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1218-1221.	0.8	2
231	Excitonic mobility edge and ultra-short photoluminescence decay time in n-type GaAsN. Applied Physics Letters, 2016, 109, .	3.3	2
232	Broadband Photodetectors: Demonstration of a Broadband Photodetector Based on a Twoâ€Đimensional Metal–Organic Framework (Adv. Mater. 9/2020). Advanced Materials, 2020, 32, 2070071.	21.0	2
233	Limitation of THz conversion efficiency in DSTMS pumped by intense femtosecond pulses. Optics Express, 2021, 29, 22494-22503.	3.4	2
994	A Novel Transport Mechanism for Photovoltaic Quantum well Intersubband Infrared Detectors. , 1994,		9

²³⁴ , 187-196.

#	Article	IF	CITATIONS
235	All-THz pump-probe spectroscopy of the intersubband AC-Stark effect in a wide GaAs quantum well. Optics Express, 2020, 28, 25358.	3.4	2
236	Pump-induced terahertz anisotropy in bilayer graphene. Physical Review B, 2022, 105, .	3.2	2
237	<title>Miniband transport in GaAs-AlAs superlattices</title> . , 1990, , .		1
238	Multiply resonant Raman scattering in Stark ladder superlattices. Surface Science, 1992, 263, 531-535.	1.9	1
239	Photocurrent and Raman spectroscopy of Stark ladder superlattices with single monolayer AlAs barriers. Journal of Crystal Growth, 1993, 127, 836-840.	1.5	1
240	Mode-locking via active gain modulation in quantum cascade lasers. , 2009, , .		1
241	Fano profile in the intersubband terahertz response of photoexcited GaAs/AlGaAs quantum wells. Journal of Physics: Conference Series, 2009, 193, 012073.	0.4	1
242	Fano effect due to ponderomotive coupling in intersubband response of semiconductor quantum wells. Physical Review B, 2012, 86, .	3.2	1
243	The THz user facility FELBE at the radiation source ELBE of Helmholtz-Zentrum Dresden-Rossendorf. , 2013, , .		1
244	Long spin relaxation time of holes in InGaAs/GaAs quantum wells probed by cyclotron resonance spectroscopy. Physical Review B, 2013, 87, .	3.2	1
245	Electrode width dependent performance of THz photoconductive emitters. , 2016, , .		1
246	Quantum Interference Current in InSb Injected by Intense Terahertz Radiation. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38, 808-812.	2.2	1
247	Pump $\hat{a} \in \hat{a}$ probe THz spectroscopy study of electronic properties of semiconductor nanowires. , 2019, , .		1
248	Scalable Large-Area Terahertz Emitters with Improved Electrode Design. , 2019, , .		1
249	Optical Kerr nonlinearity and multiphoton absorption of DSTMS measured by the Z-scan method. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2511.	2.1	1
250	TIME RESOLVED VERTICAL TRANSPORT IN GaAs/AL _x Ga _{1-x} As SUPERLATTICES. Journal De Physique Colloque, 1987, 48, C5-431-C5-434.	0.2	1
251	<title>Optical detection of resonant tunneling in GaAs/AlAs superlattices</title> . , 1990, 1283, 130.		0
252	<title>Interaction of Wannier-Stark ladders in GaAs-AlAs superlattices observed by electroreflectance</title> . , 1992, , .		0

#	Article	IF	CITATIONS
253	<title>Franz-Keldysh oscillations and Wannier-Stark localization in GaAs/AlAs superlattices</title> . , 1992, , .		Ο
254	Electric field-induced delocalization effects in GaAs/AlAs single- and double-period superlattices. Surface Science, 1992, 267, 497-500.	1.9	0
255	Highâ€speed characterization ofpâ€iâ€nphotodetectors by nonlinear photocurrent spectroscopy. Applied Physics Letters, 1994, 65, 613-615.	3.3	Ο
256	<title>Photocurrent anomaly in double-barrier quantum well structures</title> . , 1996, , .		0
257	<title>Dynamical aspects of carrier transport in quantum well intersubband photodetectors</title> . , 1997, , .		0
258	Response to "Comment on â€~Noise gain and detectivity of n-type GaAs/AlGaAs quantum well infrared photodetectors' ―[Appl. Phys. Lett. 74, 892 (1999)]. Applied Physics Letters, 1999, 74, 892-892.	3.3	0
259	High-speed photocurrent in quantum well infrared photodetectors. , 1999, 3794, 47.		Ο
260	Angular response of grating-coupled quantum well infrared photodetectors: an experimental study. , 2005, 5783, 747.		0
261	Miscellaneous Effects. , 2006, , 107-138.		Ο
262	Large-area photoconductive terahertz detectors. , 2007, , .		0
263	Non-Gaussian noise in quantum wells. , 2007, , .		Ο
264	Autocorrelation measurements of the FELBE free-electron laser and photocurrent saturation study in two-photon QWIPs. , 2007, , .		0
265	Portable THz cyclotron resonance spectrometer in the range 3 to 30THz. , 2007, , .		Ο
266	Impact of Interface Formation on Intersubband Transitions in MBE GaInAs:Si/AlAsSb Multiple Coupled DQWs. Indium Phosphide and Related Materials Conference (IPRM), IEEE International Conference on, 2007, , .	0.0	0
267	Intersubband Relaxation Dynamics in Narrow InGaAs/AlAsSb Quantum Well Structures Studied by Femtosecond Pump-Probe Spectroscopy. AIP Conference Proceedings, 2007, , .	0.4	Ο
268	Terahertz vector beams. , 2008, , .		0
269	Free-space propagation of radially and azimuthally polarized terahertz Bessel-Gauss beams. , 2009, , .		0

#	Article	IF	CITATIONS
271	Terahertz emitters and detectors for radially and azimuthally polarized beams. Proceedings of SPIE, 2009, , .	0.8	0
272	Two color pump-probe studies of intraminiband relaxation in doped GaAs/AlGaAs superlattices. , 2009, ,		0
273	Longitudinal fields in focused radially polarized terahertz beams. , 2010, , .		0
274	Infrared magneto-spectroscopy using quantum cascade lasers. , 2010, , .		0
275	Intraexciton terahertz nonlinear optics in semiconductor quantum wells: Sideband generation and AC Stark splitting. , 2010, , .		0
276	Nonlinear transmission dynamics in graphene close to the Dirac point. , 2011, , .		0
277	Direct Evidence Of Long Lived Trapped Carriers In InGaAsâ^•GaAs Quantum Dots Studied Using Terahertz-activated Luminescence Measurements. , 2011, , .		Ο
278	Terahertz Induced Intra-excitonic Autler-Townes Effect In Semiconductor Quantum Wells. AIP Conference Proceedings, 2011, , .	0.4	0
279	Ultrafast carrier capture and THz resonances in InGaAs quantum posts. Proceedings of SPIE, 2011, , .	0.8	Ο
280	Time resolved spectroscopy on quantum dots and graphene at the FELBE free-electron laser. Proceedings of SPIE, 2011, , .	0.8	0
281	Free-electron laser spectroscopy of quantum well exciton dynamics. , 2012, , .		0
282	InGaAs-based large area photoconductive emitters for 1.55 µm excitation. , 2013, , .		0
283	Longitudinal fields in focused terahertz beams. , 2013, , .		О
284	Extra-long hole spin relaxation time in InGaAs/GaAs quantum wells probed by cyclotron resonance spectroscopy. , 2013, , .		0
285	Inter-sublevel dephasing in quantum dots. , 2013, , .		Ο
286	THz free-electron laser spectroscopy of magnetoexcitons in semiconductor quantum wells. , 2013, , .		0
287	Plasmonic focusing on metal and semiconductor disks under radially polarized terahertz illumination. , 2013, , .		0
288	Ultrafast graphene-based THz detection at room temperature. , 2013, , .		0

#	Article	IF	CITATIONS
289	Observation and manipulation of dipole-forbidden exciton transitions in semiconductors. , 2014, , .		0
290	Long-lived Anisotropy of Photoexcited Graphene Electrons. , 2016, , .		0
291	Tracing the Gouy phase shift of focused, radially polarized THz pulses. , 2016, , .		0
292	Dressing Intersubband Transitions at Terahertz Frequencies. , 2018, , .		0
293	Broadband Spectrum from a Photoconductive Emitter Spanning up to 13 THz. , 2018, , .		0
294	Theoretical analysis of the length distributions of Ga-catalyzed GaAs nanowires. Journal of Physics: Conference Series, 2018, 1124, 022039.	0.4	0
295	Fano signatures between intersubband and ponderomotive responses in MQW structures. Optics Express, 2018, 26, 24054.	3.4	0
296	Low-energy carrier dynamics in graphene and other 2D materials. , 2018, , .		0
297	Broadband and High Electric Field THz Pulse Emission from Photoconductive Emitters. , 2019, , .		0
298	Optical pump – THz probe response of VO2 under high pressure. EPJ Web of Conferences, 2019, 205, 04003.	0.3	0
299	Effect of the dopant location and the number of Bragg mirrors on the performance of superlattice infrared photodetectors. , 2019, , .		0
300	Ultrafast metallization in NbO2 studied by pump-probe THz spectroscopy. , 2019, , .		0
301	Plasmonic nonlinearity in GaAs/In0.20Ga0.80As core/shell nanowires. , 2019, , .		0
302	Cavity enhanced third-harmonic generation in Si:B pumped with intense terahertz pulses. , 2019, , .		0
303	Preventing the breakdown of photoconductive terahertz emitter at high bias-field operation. , 2021, , .		0
304	High-field charge transport in InGaAs nanowires. , 2021, , .		0
305	Anisotropic Terahertz Pump-Probe Response of Bilayer Graphene. , 2021, , .		0
306	Actively mode-locked pulses from a mid-IR quantum cascade laser. , 2021, , .		0

#	Article	IF	CITATIONS
307	Kinetic Monteâ€Carlo Simulation of Exciton Hopping: Urbach Tails in Gasâ€Molecule Decorated MoSe 2. Physica Status Solidi (B): Basic Research, 2021, 258, 2100186.	1.5	0
308	BaFe2As2 Investigated by Pump-Probe Spectroscopy under High Pressures. , 2021, , .		0
309	Improved Germanium photoswitch for cavity dumping of a free-electron laser. , 2021, , .		0
310	THz conversion efficiency in DSTMS limited by high-order nonlinearities. , 2021, , .		0
311	Fifth-harmonic generation in Si:B pumped with intense terahertz pulses. , 2021, , .		0
312	Terahertz modulation of the trion resonance in MoSe2 monolayer. , 2021, , .		0
313	Low-noise quantum well infrared photodetectors for high-resolution thermal imaging. , 2002, , 203-208.		0
314	Carrier Capture Studies in InGaAs Quantum Posts. , 2010, , .		0
315	Photovoltaic Intersubband Photodetectors Using GaAs Quantum Wells Confined by AlAs Tunnel Barriers. NATO ASI Series Series B: Physics, 1992, , 73-81.	0.2	0
316	Far-Infrared Nonlinear Optics in Multilayer Epitaxial Graphene. , 2016, , .		0
317	Terahertz pump — Terahertz probe system at Novosibirsk free electron laser: Commissioning and results of first experiments. , 2016, , .		0
318	THz Nonlinear Response of Landau-Quantized Graphene. , 2017, , .		0
319	Nonlinear Plasmonic Response of Doped GaAs Nanowires Observed in s-SNIM. , 2018, , .		0
320	Filling the 5-10 THz gap using Ge-based photoconductive emitter. , 2019, , .		0
321	Ultrashort pulses from a 8 μm wavelength semiconductor laser. , 2020, , .		0
322	Nonlinear plasmonic response in GaAs/InGaAs core/shell nanowires. , 2020, , .		0
323	Easy-to-Use Scalable Antennas for Coherent Detection of THz Radiation. Springer Proceedings in Physics, 2008, , 167-169.	0.2	0
324	Nonlinear IR and THz Spectroscopy of Semiconductor Nanowires. , 2020, , .		0

#	Article	IF	CITATIONS
325	Dynamics, Ultrafast, and Heterodyne. , 2006, , 203-228.		0
326	Basics of Infrared Detection. , 2006, , 5-12.		0
327	Photoconductive QWIP. , 2006, , 45-81.		0
328	Photovoltaic QWIP. , 2006, , 83-95.		0
329	Optical Coupling. , 2006, , 97-105.		0
330	Related Structures and Devices. , 2006, , 139-172.		0