
Chen-Hsiung Hung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6252610/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Refined Synthesis of 5-Substituted Dipyrromethanes. Journal of Organic Chemistry, 1999, 64, 1391-1396.	3.2	454
2	Four- and Five-Coordinate Aluminum Ketiminate Complexes:Â Synthesis, Characterization, and Ring-Opening Polymerization. Inorganic Chemistry, 2002, 41, 6450-6455.	4.0	157
3	Design and Characterization of Novel Porphyrins with Oligo(phenylethylnyl) Links of Varied Length for Dye-Sensitized Solar Cells: Synthesis and Optical, Electrochemical, and Photovoltaic Investigation. Journal of Physical Chemistry C, 2009, 113, 755-764.	3.1	149
4	Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 19151-19157.	3.1	137
5	Nickel(II) Complexes of Bis(2-diphenylphosphinophenyl)amide. Organometallics, 2003, 22, 3007-3009.	2.3	132
6	Influence of Water Content on the Self-Assembly of Metalâ^'Organic Frameworks Based on Pyridine-3,5-dicarboxylate. Inorganic Chemistry, 2006, 45, 2430-2437.	4.0	106
7	Design and synthesis of manganese porphyrins with tailored lipophilicity: Investigation of redox properties and superoxide dismutase activity. Bioorganic and Medicinal Chemistry, 2007, 15, 7066-7086.	3.0	100
8	m-Benziporphodimethene: a new porphyrin analogue fluorescence zinc(<scp>ii</scp>) sensor. Chemical Communications, 2008, , 978-980.	4.1	95
9	Highly efficient electrocatalytic hydrogen evolution from neutral aqueous solution by a water-soluble anionic cobalt(<scp>ii</scp>) porphyrin. Chemical Communications, 2015, 51, 15067-15070.	4.1	92
10	Ligand-Promoted Rapid Nitric Oxide Dissociation from Ferrous Porphyrin Nitrosyls. Journal of the American Chemical Society, 1995, 117, 9584-9585.	13.7	90
11	Nitric Oxide Turn-on Fluorescent Probe Based on Deamination of Aromatic Primary Monoamines. Inorganic Chemistry, 2012, 51, 5400-5408.	4.0	90
12	Synthesis and Characterization of Iron N-Confused Porphyrins:Â Structural Evidences of Agostic Interaction. Inorganic Chemistry, 2001, 40, 5070-5071.	4.0	85
13	Formation of Stable Tin Perovskites Coâ€crystallized with Three Halides for Carbonâ€Based Mesoscopic Leadâ€Free Perovskite Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 13819-13823.	13.8	85
14	Role of Tin Chloride in Tin-Rich Mixed-Halide Perovskites Applied as Mesoscopic Solar Cells with a Carbon Counter Electrode. ACS Energy Letters, 2016, 1, 1086-1093.	17.4	82
15	Metal Oxidation Promoted Câ^'H Activation in Manganese Complexes of N-Confused Porphyrin. Inorganic Chemistry, 2002, 41, 3334-3336.	4.0	78
16	Recent progress on metalloporphyrin-based hydrogen evolution catalysis. Coordination Chemistry Reviews, 2020, 410, 213234.	18.8	78
17	Oxidation and Oxygenation of Iron Complexes of 2-Aza-21-carbaporphyrin. Journal of the American Chemical Society, 2004, 126, 4420-4431.	13.7	77
18	Dimeric iron n-confused porphyrin complexesElectonic supplementary information (ESI) available: general information; preparation and crystal data for 6 and 7; Fig. S1: absorption spectra for 6 and 7; Figs. S2 and S3: magnetic susceptibility data for 6 and 7. See http://www.rsc.org/suppdata/cc/b2/b202679a/. Chemical Communications, 2002, , 1516-1517.	4.1	75

#	Article	IF	CITATIONS
19	Nitric Oxide Physiological Responses and Delivery Mechanisms Probed by Water-Soluble Roussin's Red Ester and {Fe(NO) ₂ } ¹⁰ DNIC. Journal of the American Chemical Society, 2008, 130, 10929-10938.	13.7	70
20	Femtosecond Transient Absorption of Zinc Porphyrins with Oligo(phenylethylnyl) Linkers in Solution and on TiO ₂ Films. Journal of Physical Chemistry C, 2009, 113, 11524-11531.	3.1	64
21	Nanocomposite catalyst of graphitic carbon nitride and Cu/Fe mixed metal oxide for electrochemical CO2 reduction to CO. Applied Catalysis B: Environmental, 2021, 291, 120052.	20.2	61
22	Synthesis and Axial Ligand Substitution Chemistry of Ru(TTP)(NO)X. Structures of Ru(TTP)(NO)X (X =) Tj ETQq0	0 0 rgBT /0 4.0	Verlock 107

23	Effects of Porphyrinic <i>meso</i> -Substituents on the Photovoltaic Performance of Dye-Sensitized Solar Cells: Number and Position of <i>p</i> -Carboxyphenyl and Thienyl Groups on Zinc Porphyrins. Journal of Physical Chemistry C, 2012, 116, 11907-11916.	3.1	58
24	Family of V(III)-Tristhiolato Complexes Relevant to Functional Models of Vanadium Nitrogenase: Synthesis and Electronic Structure Investigations by Means of High-Frequency and -Field Electron Paramagnetic Resonance Coupled to Quantum Chemical Computations Inorganic Chemistry, 2010, 49, 977-988.	4.0	57
25	Iron and Copper Complexes of Tetraphenyl-m-benziporphyrin:Â Reactivity of the Internal Câ^'H Bond. Inorganic Chemistry, 2004, 43, 4118-4120.	4.0	56
26	Amido Phosphine Complexes of Zinc. Inorganic Chemistry, 2003, 42, 5471-5473.	4.0	55
27	Hydroalumination of Carbon Dioxide, Carbon Disulfide, and Phenyl Isocyanate with an Aluminum Ketiminate Compound. European Journal of Inorganic Chemistry, 2004, 2004, 4898-4906.	2.0	55
28	A <i>N</i> -(2-Aminophenyl)-5-(dimethylamino)-1-naphthalenesulfonic Amide (Ds-DAB) Based Fluorescent Chemosensor for Peroxynitrite. Organic Letters, 2013, 15, 4242-4245.	4.6	54
29	Ruthenium Complexes of 2-[(4-(Arylamino)phenyl)azo]pyridine Formed via Regioselective Phenyl Ring Amination of Coordinated 2-(Phenylazo)pyridine:A Isolation of Products, X-ray Structure, and Redox and Optical Properties. Inorganic Chemistry, 2003, 42, 198-204.	4.0	53
30	Six-Coordinate and Five-Coordinate Fell(CN)2(CO)x Thiolate Complexes (x = 1, 2):  Synthetic Advances for Iron Sites of [NiFe] Hydrogenases. Journal of the American Chemical Society, 2002, 124, 1680-1688.	13.7	52
31	Synthesis, structure and properties of mononuclear cobalt(II) and cobalt(III) pseudohalide complexes containing N-donor Schiff bases: Synthetic control of metal oxidation levels. Polyhedron, 2005, 24, 1755-1763.	2.2	51
32	Aluminum Complexes Incorporating Bidentate Amido Phosphine Ligands. Inorganic Chemistry, 2004, 43, 2166-2174.	4.0	50
33	New Dual Donor–Acceptor (2Dâ€i€â€2A) Porphyrin Sensitizers for Stable and Costâ€Effective Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2013, 8, 2144-2153.	3.3	49
34	Monomeric, Dimeric, and Trimeric Calcium Compounds Containing Substituted Pyrrolyl and Ketiminate Ligands: Synthesis and Structural Characterization. Inorganic Chemistry, 2009, 48, 8004-8011.	4.0	47
35	Blue Dimetallic Complexes of Two Heavy Metal Ions Cdlland Hgllwith an Extended Nitrogen Donor Ligand. Preparation, Spectral Characterization, and Crystallographic Studies. Inorganic Chemistry, 2003, 42, 8592-8597.	4.0	46
36	Bioinorganic Chemistry of the Natural [Fe(NO) ₂] Motif: Evolution of a Functional Model for NO-Related Biomedical Application and Revolutionary Development of a Translational Model. Inorganic Chemistry, 2018, 57, 12425-12443.	4.0	46

#	Article	IF	CITATIONS
37	Unusual Reduction of Ammonium Heptamolybdate to Novel Molybdenum(IV)-Stabilized Azo Anion Radical Complexes. Inorganic Chemistry, 2004, 43, 7456-7462.	4.0	43
38	Synthesis, structure, and catecholase activity of bispyrazolylacetate copper(<scp>ii</scp>) complexes. Dalton Transactions, 2014, 43, 14726-14736.	3.3	43
39	Synthesis and Structural Characterization ofmeso-Thienyl Core-Modified Porphyrins. European Journal of Organic Chemistry, 2003, 2003, 4392-4400.	2.4	41
40	Coordination Chemistry of the Pseudochalcogen Nitrite Analog Nitrosodicyanomethanide. Inorganic Chemistry, 1995, 34, 2569-2581.	4.0	40
41	Remarkable Paramagnetically Shifted1H and2H NMR Spectra of Iron(II) Complexes of 2-Aza-21-carbaporphyrin:Â An Evidence for Agostic Interaction. Inorganic Chemistry, 2003, 42, 7348-7350.	4.0	40
42	Novel expanded porphyrin sensitized solar cells using boryl oxasmaragdyrin as the sensitizer. Chemical Communications, 2013, 49, 6882.	4.1	40
43	Photocatalytic hydrogen evolution from neutral aqueous solution by a water-soluble cobalt(<scp>ii</scp>) porphyrin. Sustainable Energy and Fuels, 2018, 2, 2036-2043.	4.9	40
44	Electrochemical Hydrogen Evolution by Cobalt (II) Porphyrins: Effects of Ligand Modification on Catalytic Activity, Efficiency and Overpotential. Journal of the Electrochemical Society, 2018, 165, H481-H487.	2.9	40
45	Synthesis and Characterization of Isostructural Metalloporphyrin Chalconitrosyl Complexes Ru(TTP)(NE)Cl (E = O, S) and a Remarkable Thionitrosyl/Nitrite → Nitrosyl/Thiazate Transformation. Inorganic Chemistry, 1997, 36, 1992-1993.	4.0	39
46	Demetalation of the Regioselective Oxygenation Product of an N-Confused Porphyrin Complex. Organic Letters, 2004, 6, 1393-1396.	4.6	39
47	Synthesis and crystal structure of core-modified benziporphyrin: thia-p-benziporphyrin. Tetrahedron Letters, 2004, 45, 129-132.	1.4	38
48	Syntheses and structures of three new coordination polymers generated from the flexible 1,3-bis(4-pyridyl)propane ligand and zinc salts. Polyhedron, 2006, 25, 2325-2332.	2.2	38
49	Effects of Number and Position of Meta and Para Carboxyphenyl Groups of Zinc Porphyrins in Dye-Sensitized Solar Cells: Structure–Performance Relationship. ACS Applied Materials & Interfaces, 2015, 7, 1879-1891.	8.0	38
50	Design and Synthesis of a New Binucleating Ligand via Cobalt-Promoted Câ^'N Bond Fusion Reaction. Ligand Isolation and Its Coordination to Nickel, Palladium, and Platinum. Inorganic Chemistry, 2003, 42, 5367-5375.	4.0	37
51	Development of Hybrid Pseudohalide Tin Perovskites for Highly Stable Carbon-Electrode Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 21739-21747.	8.0	35
52	Cu-Mediated Syntheses of N-Fused and Ring-Modified Trithiahexaphyrins. Chemistry - A European Journal, 2002, 8, 4542-4548.	3.3	34
53	Three p-carboxyphenyl groups possessing zinc porphyrins: efficient, stable, and cost-effective sensitizers for dye-sensitized solar cells. Chemical Communications, 2014, 50, 725-727.	4.1	33
54	Facile Nitrite Reduction and Conversion Cycle of {Fe(NO)} ^{6/7} Species: Chemistry of Iron N-Confused Porphyrin Complexes via Protonation/Deprotonation. Journal of the American Chemical Society, 2009, 131, 7952-7953.	13.7	32

#	Article	IF	CITATIONS
55	Syntheses and structures of iron carbonyl complexes derived from N-(5-methyl-2-thienylmethylidene)-2-thiolethylamine and N-(6-methyl-2-pyridylmethylidene)-2-thiolethylamine. Journal of Organometallic Chemistry, 2004, 689, 2192-2200.	1.8	31
56	Insertion, Reduction, and Carbon–Carbon Coupling Induced by Monomeric Aluminum Hydride Compounds Bearing Substituted Pyrrolyl Ligands. Chemistry - A European Journal, 2006, 12, 3067-3073.	3.3	31
57	Nitrite-Mediated <i>S</i> -Nitrosylation of Caspase-3 Prevents Hypoxia-Induced Endothelial Barrier Dysfunction. Circulation Research, 2011, 109, 1375-1386.	4.5	31
58	Electrospun Fibers as a Solidâ€State Realâ€Time Zinc Ion Sensor with High Sensitivity and Cell Medium Compatibility. Advanced Functional Materials, 2013, 23, 1566-1574.	14.9	31
59	An Unusual Hydride-Bridged Aluminum Complex with a Square-Planar Tetraaluminum Core Stabilized by 2,5-Bis((Dimethylamino)methyl)pyrrole Ligands. Organometallics, 2001, 20, 4445-4447.	2.3	30
60	Structure and Characterization of the First Metal Complex of Dithiaporphyrin:Â Ru(S2TTP)Cl2. Inorganic Chemistry, 2001, 40, 6845-6847.	4.0	30
61	Conversion of Nitric Oxide into Nitrous Oxide as Triggered by the Polarization of Coordinated NO by Hydrogen Bonding. Angewandte Chemie - International Edition, 2016, 55, 5190-5194.	13.8	30
62	Syntheses and Structures of Zwitterionic Indium(III) and Di-zinc Compounds of an Extended Nitrogenous Ligand. Examples of Unusually Long Wavelength Transitions in d10-Metal Complexes. Inorganic Chemistry, 2003, 42, 5153-5157.	4.0	28
63	Sensitivity evaluation of rhodamine B hydrazide towards nitric oxide and its application for macrophage cells imaging. Analytica Chimica Acta, 2011, 708, 141-148.	5.4	28
64	Metal-Promoted Aromatic Ring Amination and Deamination Reactions at a Diazo Ligand Coordinated to Rhodium and Ruthenium. Inorganic Chemistry, 2002, 41, 7125-7135.	4.0	26
65	Tetramethylâ€ <i>m</i> â€benziporphodimethene and Isomeric α,βâ€Unsaturated γâ€Lactam Embedded N o Tetramethylâ€ <i>m</i> â€benziporphodimethenes. Chemistry - an Asian Journal, 2009, 4, 164-173.	nfysed	26
66	Oxasmaragdyrins as New and Efficient Hole-Transporting Materials for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 31950-31958.	8.0	26
67	Development of Novel Mixed Halide/Superhalide Tin-Based Perovskites for Mesoscopic Carbon-Based Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 2443-2448.	4.6	26
68	Syntheses and X-ray structures of some pyrrolylaldiminate metal complexes. Journal of Organometallic Chemistry, 2003, 679, 135-142.	1.8	25
69	Silver(I) complexes of the naphthyl-azoimine function: single crystal X-ray structure of bis-[1-ethyl-2-(naphthyl-1±-azo)imidazole]silver(I) perchlorate. Polyhedron, 2004, 23, 793-800.	2.2	25
70	Chromium Complexes of an Isomeric N-Donor Ligand, 2-[(N-Arylamino)phenylazo]pyridine:  Amination Reactions, X-ray Structure, and Redox Properties. Inorganic Chemistry, 2002, 41, 4531-4538.	4.0	24
71	The First Example of a Seven-Coordinate Vanadium(III) Thiolate Complex Containing the Hydrazine Molecule, an Intermediate of Nitrogen Fixation. Inorganic Chemistry, 2003, 42, 7369-7371.	4.0	24
72	Molecular assembling using axial phenolate on an iron N-confused porphyrin complex. Chemical Communications, 2006, , 1866.	4.1	24

#	Article	IF	CITATIONS
73	Metal-Induced Coordination Inversion and Carbonâ^'Nitrogen Bond Rearrangement. Structurally Characterized Phenyl Isocyanate Inserted into Aluminum Methyl Compounds and O- and N-Bound Aluminum Compounds. Inorganic Chemistry, 2004, 43, 2183-2188.	4.0	23
74	Architectures in two crystalline homo and hetero two-dimensional polymers of the type [Cd3(tren)2(NCS)6]n and [Ni2Cd(tren)2(NCS)6]n [tren=Tris(2-aminoethyl)amine] through molecular ion bridges. Polyhedron, 2006, 25, 645-653.	2.2	23
75	Factors That Regulate the Conformation of <i>m</i> â€Benziporphodimethene Complexes: Agostic Metal–Arene Interaction, Hydrogen Bonding, and η ² ,ï€ Coordination. Chemistry - A European Journal, 2011, 17, 11332-11343.	3.3	23
76	Formation of Stable Tin Perovskites Co rystallized with Three Halides for Carbonâ€Based Mesoscopic Leadâ€Free Perovskite Solar Cells. Angewandte Chemie, 2017, 129, 14007-14011.	2.0	23
77	Synthesis and Characterization of Five-Coordinate Gallium and Indium Complexes Stabilized by Tridentate, Substituted Pyrrole Ligands. European Journal of Inorganic Chemistry, 2003, 2003, 1440-1444.	2.0	22
78	A Ni(<scp>ii</scp>) dinuclear complex bridged by end-on azide-N and phenolate-O atoms: spectral interpretation, magnetism and biological study. Inorganic Chemistry Frontiers, 2015, 2, 749-762.	6.0	22
79	Synthesis and crystal structures of 2,3,12,13-tetraalkoxy-21,23-dithiaporphyrins and 2,3-dialkoxy-21-monothiaporphyrins. Tetrahedron, 2004, 60, 10671-10680.	1.9	21
80	Synthesis, Structure, and Reactivity of Diazoketiminato Complexes of Platinum(II) and Palladium(II): Cytotoxic Properties of a Platinum Complex. European Journal of Inorganic Chemistry, 2007, 2007, 4272-4281.	2.0	21
81	Different sensing modes of fluoride and acetate based on a calix[4]arene with 25,27-bistriazolylmethylpyrenylacetamides. Photochemical and Photobiological Sciences, 2014, 13, 370-379.	2.9	21
82	Ruthenium complexes of quinone related N-aryl-1,2-diimines. Metal mediated synthesis, X-ray structure and chemical reactionElectronic supplementary information (ESI) available: partial energy level diagram and molecular orbitals of 1c. See http://www.rsc.org/suppdata/nj/b2/b203956g/. New Journal of Chemistry, 2002, 26, 1409-1414.	2.8	20
83	Reactions of N-(2-thienylmethylidene)-2-thienylmethylamine derivatives with diiron nonacarbonyl: characterization and structures of cyclometallated diiron complexes Fe2(CO)6(Rî—,C4HSî—,CH2NCH2î—,C4H3S) and linear tetrairon clusters Fe4(CO)10(Rî—,C4HSî—,CHî~NCH2î— Journal of Organometallic Chemistry, 2003, 687, 16-26.	-,c4H3s)2.	20
84	Selective real-time nitric oxide detection by functionalized zinc oxide. Journal Physics D: Applied Physics, 2009, 42, 155105.	2.8	20
85	Effects of potential shift and efficiency of charge collection on nanotube-based porphyrin-sensitized solar cells with conjugated links of varied length. Physical Chemistry Chemical Physics, 2010, 12, 12973.	2.8	20
86	Ruthenium Complexes of Thiaporphyrin and Dithiaporphyrin. Inorganic Chemistry, 2011, 50, 11947-11957.	4.0	20
87	Porphyrin-Based Electrochemical H2 Evolution: Role of Central Metal Ion on Overpotential and Catalytic Activity. Electrocatalysis, 2018, 9, 689-696.	3.0	20
88	Intrinsic Ultralow-Threshold Laser Action from Rationally Molecular Design of Metal–Organic Framework Materials. ACS Applied Materials & Interfaces, 2020, 12, 36485-36495.	8.0	20
89	Preparation and Oxygenation of Cobalt Nâ€Confused Porphyrin Nitrosyl Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 1196-1199.	2.0	19
90	Synthesis and crystal structure of 2,3,12,13-tetraalkoxy-21, 23-dithiaporphyrinsElectronic supplementary information (ESI) available: 1H-NMR, LD-MS spectra and X-ray crystal structure data. See http://www.rsc.org/suppdata/cc/b2/b208017f/. Chemical Communications, 2002, , 2642-2643.	4.1	18

#	Article	IF	CITATIONS
91	Synthesis of carboxylate functionalized A ₃ B and A ₂ B ₂ thiaporphyrins and their application in dye-sensitized solar cells. New Journal of Chemistry, 2014, 38, 3960-3972.	2.8	17
92	Ni and Pd N-confused porphyrin complexes as catalysts for the synthesis of cyclic carbonates from epoxides and CO ₂ . Dalton Transactions, 2019, 48, 7527-7531.	3.3	17
93	Ni and Zn N-confused porphyrin complexes as recyclable catalysts for high efficiency solvent-free CO ₂ fixation into cyclic carbonates. Catalysis Science and Technology, 2021, 11, 2144-2154.	4.1	17
94	Thiaporphyrins with One, Two and Four Unsubstitutedmeso-Carbons: Synthesis and Functionalization. European Journal of Organic Chemistry, 2003, 2003, 3730-3734.	2.4	16
95	Toward carboxylate group functionalized A4, A2B2, A3B oxaporphyrins and zinc complex of oxaporphyrins. Tetrahedron, 2011, 67, 4680-4688.	1.9	16
96	Characterization of pentacyanoferrate(II) and -(III) complexes of adenosine and related aminopyridine ligands. Inorganic Chemistry, 1990, 29, 2940-2944.	4.0	15
97	Benzaldehyde 2,4-dinitrophenylhydrazone. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o135-o136.	0.4	15
98	Molecular Engineering of Boryl Oxasmaragdyrins through Peripheral Modification: Structure–Efficiency Relationship. Chemistry - A European Journal, 2015, 21, 4825-4841.	3.3	15
99	The cis-isomer performs better than the trans-isomer in porphyrin-sensitized solar cells: interfacial electron transport and charge recombination investigations. Physical Chemistry Chemical Physics, 2015, 17, 20134-20143.	2.8	15
100	EPR and electrochemical interpretation of bispyrazolylacetate anchored Ni(<scp>ii</scp>) and Mn(<scp>ii</scp>) complexes: cytotoxicity and anti-proliferative activity towards human cancer cell lines. New Journal of Chemistry, 2018, 42, 9126-9139.	2.8	15
101	Formation of a Sulfur-Atom-Inserted N-Confused Porphyrin Iron Nitrosyl Complex by Denitrosation and C <i>â^'</i> S Bond Cleavage of an <i>S-</i> Nitrosothiol. Inorganic Chemistry, 2007, 46, 10941-10943.	4.0	14
102	EPR interpretation, magnetism and biological study of a Cu(II) dinuclear complex assisted by a schiff base precursor. Journal of Biological Inorganic Chemistry, 2017, 22, 481-495.	2.6	14
103	Solvent-assisted crystallization via a delayed-annealing approach for highly efficient hybrid mesoscopic/planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 172, 270-276.	6.2	14
104	Synthesis, reactivity, and structures of dialuminum complexes containing linked ketiminate ligands. Inorganica Chimica Acta, 2005, 358, 3761-3767.	2.4	13
105	Interior aliphatic C–H bond activation on iron(ii) N-confused porphyrin through synergistic nitric oxide binding and iron oxidation. Chemical Communications, 2012, 48, 4989.	4.1	13
106	Effects of Coreâ€modification on Porphyrin Sensitizers to the Efficiencies of Dyeâ€sensitized Solar Cells. Journal of the Chinese Chemical Society, 2014, 61, 545-555.	1.4	13
107	EPR interpretation and electrocatalytic H2 evolution study of bis(3,5-di-methylpyrazol-1-yl)acetate anchored Cu(II) and Mn(II) complexes. Molecular Catalysis, 2017, 439, 81-90.	2.0	13
108	Effects of Position and Electronic Nature of Substituents on Cobaltâ€Porphyrinâ€Catalyzed Hydrogen Evolution Reaction. ChemistrySelect, 2017, 2, 10565-10571.	1.5	13

#	Article	IF	CITATIONS
109	Coordination chemistry of a multidentate pyrrolylaldiminate ligand. X-ray crystal structure of double-helical bis-μ-[N,N′-ethylenedi(5-tert-butyl-pyrrol-2-ylaldiminate)]-dimagnesium. Journal of Organometallic Chemistry, 2004, 689, 947-952.	1.8	12
110	Synthesis and crystal structure of diiodobis(thiourea)mercury (ii)-bis(diazafluoren-9-one). Journal of Coordination Chemistry, 2004, 57, 791-796.	2.2	12
111	Study on the structure, stability and tautomerisms of meta-benziporphodimethene and N-Confused isomers containing γ–lactam ring. Journal of Molecular Structure, 2019, 1187, 138-150.	3.6	12
112	Synthesis and Study of Azo-Dye Compounds: Various Molecular Stackings from Different Polarities of the Molecules. Helvetica Chimica Acta, 2002, 85, 1517.	1.6	11
113	Aluminum Complexes Containing Cyclohexaneâ€1,2â€diyl Linked Bis(ketiminato) Ligands and Protonâ€Promoted Demethylation. European Journal of Inorganic Chemistry, 2008, 2008, 3000-3008.	2.0	11
114	A nonlinear optical cadmium(<scp>ii</scp>)-based metal–organic framework with chiral helical chains derived from an achiral bent dicarboxylate ligand. CrystEngComm, 2021, 23, 824-830.	2.6	11
115	Hafnium chloride and hafnium methyl complexes bearing substituted pyrrolyl ligands: synthesis, characterization, and ethylene polymerization. Inorganica Chimica Acta, 2004, 357, 3517-3524.	2.4	10
116	The Synthesis and Crystal Structure of β-Substituted Thiaporphyrins with Novel Cyclic Substituents. Bulletin of the Chemical Society of Japan, 2004, 77, 1173-1180.	3.2	10
117	Nitric acid promoted formation of an N-confused porphyrin-derived porphodimethene and a violinoid. Journal of Porphyrins and Phthalocyanines, 2006, 10, 953-961.	0.8	10
118	D-A-π-A organic dyes for dye-sensitized solar cells: effect of π-bridge length between two acceptors on photovoltaic properties. Tetrahedron, 2015, 71, 7977-7984.	1.9	10
119	Iron(<scp>iii</scp>) bis(pyrazol-1-yl)acetate based decanuclear metallacycles: synthesis, structure, magnetic properties and DFT calculations. Dalton Transactions, 2016, 45, 15089-15096.	3.3	10
120	A new Ni(II) coordination polymer formed by bulky bis(imidazole) and 4,4′-oxybis(benzoic acid): Topological and spectral elucidation. Inorganica Chimica Acta, 2018, 469, 478-483.	2.4	10
121	Thermally stable indium based metal–organic frameworks with high dielectric permittivity. Journal of Materials Chemistry C, 2020, 8, 9724-9733.	5.5	10
122	Dimolybdenum complexes with mixed formamidinate ligands. Inorganica Chimica Acta, 2004, 357, 1002-1010.	2.4	9
123	Synthesis, structure, redox and spectra of green iridium complexes of tridentate azo-aromatic ligands. Journal of Chemical Sciences, 2007, 119, 3-9.	1.5	9
124	A Rigidity-Modulated Approach toward the Construction of Metallacycles from a Flexible Tetratopic Ligand. Organometallics, 2010, 29, 283-285.	2.3	9
125	Direct Evidence of a Liquidâ€Crystalline Phase Induced by Intermolecular Cī£¿Hâ‹â‹â‹Cl Interactions on the Basis of IR Spectroscopy and Theoretical Simulations. Chemistry - A European Journal, 2011, 17, 111-116.	3.3	9
126	A rare doubly nitrato and phenoxido bridged trimetallic Cu ^{II} complex: EPR, antiferromagnetic coupling and theoretical rationalization. RSC Advances, 2016, 6, 54856-54865.	3.6	9

#	Article	IF	CITATIONS
127	Electrocatalytic H2 evolution of a Schiff-base assisted Cu(II) derivative as catalyst on homogeneous and heterogeneous phase. Catalysis Communications, 2019, 119, 111-114.	3.3	9
128	ortho-Carom–N bond fusion in aniline associated with electrophilic chlorination reactions at ruthenium(III) coordinated acetylacetonates. Inorganica Chimica Acta, 2011, 374, 366-372.	2.4	8
129	Highly efficient electrocatalytic hydrogen evolution from neutral aqueous solution by water soluble copper (II) porphyrin. Inorganica Chimica Acta, 2020, 513, 119929.	2.4	8
130	Hydrogel-based zinc ion sensor on optical fiber with high resolution and application to neural cells. Biosensors and Bioelectronics, 2020, 162, 112230.	10.1	8
131	Aluminum Alkyl Complexes Containing Bidentate, Mono―or diâ€∎nionic Pyrrolyl Ligands: Intramolecular Elimination of Methane and 1â€Hexene Polymerization. Journal of the Chinese Chemical Society, 2006, 53, 1297-1302.	1.4	7
132	An organic hydrogel film with micron-sized pillar array for real-time and indicator-free detection of Zn2+. Organic Electronics, 2011, 12, 1899-1902.	2.6	7
133	Hydrido iridium(III) complexes of azoaromatic ligands. Isolation, structure and studies of their physicochemical properties. Inorganica Chimica Acta, 2011, 372, 168-174.	2.4	7
134	A mechanistic study of nitrite reduction on iron(<scp>ii</scp>) complexes of methylated N-confused porphyrins. Dalton Transactions, 2017, 46, 15087-15094.	3.3	7
135	Tris(phenanthroline-κ2N,N′)cobalt(II) fumarate fumaric acid tetrahydrate. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, m297-m299.	0.2	6
136	Co-sensitization of free-base and zinc porphyrins: An effective approach to improve the photon-to-current conversion efficiency of dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2015, 19, 695-707.	0.8	6
137	Zinc Porphyrins Possessing Three p-Carboxyphenyl Groups: Effect of the Donor Strength of Push-Groups on the Efficiency of Dye Sensitized Solar Cells. Energies, 2016, 9, 513.	3.1	6
138	Phosphor-Free Electrically Driven White Light Emission from Nanometer-Thick Barium–Organic Framework Films. ACS Applied Nano Materials, 2021, 4, 2395-2403.	5.0	6
139	2,2′-Diamino-4,4′-bi-1,3-thiazole. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o312-o313.	0.2	5
140	Synthesis and study of azo dye compounds: variation of mesogenic behaviour with length of alkyl chains. Liquid Crystals, 2004, 31, 773-779.	2.2	5
141	Theoretical, thermal, and coordination chemistry of the amphoteric thiazate (NSO–)1 ion. Canadian Journal of Chemistry, 2005, 83, 2021-2031.	1.1	5
142	Real-time and indicator-free detection of aqueous nitric oxide with hydrogel film. Applied Physics Letters, 2010, 96, 223702.	3.3	5
143	Novel Steroid-Sensing Model and Characterization of Protein Interactions Based on Fluorescence Anisotropy Decay. Journal of Physical Chemistry B, 2010, 114, 4327-4334.	2.6	5
144	Solid-state NMR study of fluorinated steroids. Steroids, 2014, 80, 64-70.	1.8	5

#	Article	IF	CITATIONS
145	Chemistry of dimolybdenum complexes containing anions of N,N′-di(6-methyl-2-pyridyl)formamidine (HDMepyF) and carboxylate ligands. Inorganica Chimica Acta, 2003, 351, 89-96.	2.4	4
146	Integrated semiconductor optoelectronic devices for real-time and indicator-free detection of aqueous nitric oxide. Organic Electronics, 2011, 12, 751-755.	2.6	4
147	Solid-state sensing tip for zinc ion with double parallel optical fibers embedded in fluorescent hydrogel. Organic Electronics, 2015, 26, 429-438.	2.6	4
148	Conversion of Nitric Oxide into Nitrous Oxide as Triggered by the Polarization of Coordinated NO by Hydrogen Bonding. Angewandte Chemie, 2016, 128, 5276-5280.	2.0	4
149	Zn(II) and Co(II) derivatives anchored with scorpionate precursor: Antiproliferative evaluation in human cancer cell lines. Journal of Inorganic Biochemistry, 2020, 202, 110881.	3.5	4
150	A Trimetallic Cu(II) Derivative as an Efficient and Stable Electrocatalyst for Reduction of Proton to Molecular Hydrogen. Catalysis Letters, 2020, 150, 2200-2207.	2.6	4
151	Thin Film Growth of 3D Srâ€based Metalâ€Organic Framework on Conductive Glass via Electrochemical Deposition. ChemistryOpen, 2022, 11, e202100295.	1.9	4
152	Electronic Structure Optimization of PdZn-Graphitic Carbon Nitride Nanocomposites as Electrocatalysts for Selective CO ₂ to CO Conversion. ACS Omega, 2022, 7, 17295-17304.	3.5	4
153	Isolation of a Manganese Complex of a Tridentate Azoâ€aromatic Ligand from an Unusual Mn ₂ (CO) ₁₀ Promoted Simultaneous Reductive Azo Cleavage and Aromatic Ring Amination Reactions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 1775-1777.	1.2	3
154	Cation ion specifically induces a conformational change in trans-dehydroandrosterone – A solid-state NMR study. Steroids, 2015, 96, 73-80.	1.8	3
155	Accurate real-time sensing tip for aqueous NO with optical fibers embedded in active hydrogel waveguide. AIP Advances, 2018, 8, 025207.	1.3	3
156	catena-Poly[[aquabis(1H-benzimidazole-κN3)manganese(II)]-μ-adipato]. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, m155-m157.	0.4	2
157	Syntheses of Amino Group‣ubstituted Nâ€Confused Porphyrins. Journal of the Chinese Chemical Society, 2012, 59, 633-640.	1.4	2
158	Hydro gel light-guiding conjunction for absorptive type multi-ions detection. Sensors and Actuators B: Chemical, 2016, 233, 535-539.	7.8	2
159	2,5â€Thienyleneâ€&trapped Bicyclic and Tricyclic Expanded Porphyrins. ChemPlusChem, 2019, 84, 810-815.	2.8	2
160	Tuning Alkyl Chain Lengths of Oxasmaragdyrins-B(OR)2 for Optimizing Hole-Transport and Efficiency in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 9090-9098.	5.1	2
161	Functional Groups Assisted Tunable Dielectric Permittivity of Guestâ€Free Znâ€Based Coordination Polymers for Gate Dielectrics. Chemistry - A European Journal, 2022, 28, .	3.3	2
162	Bulky bis(imidazole) and 2-sulfoterephthalate Assisted 3-D Cu(II) and 2-D Mn(II) Coordination Polymers: Topology, Diversity in Metal Containing Nodes and Spectral Elucidation. ChemistrySelect, 2016, 1, 6230-6237.	1.5	1

#	Article	IF	CITATIONS
163	Zn and Cdâ€Based Coordination Networks: Highly Selective Naked Eye Sensing of Pyridine. ChemistrySelect, 2017, 2, 3831-3837.	1.5	1
164	Electrocatalytic H2 Evolution of Bis(3,5-di-methylpyrazol-1-yl)acetate Anchored Hexa-coordinated Co(II) Derivative. Catalysis Letters, 2018, 148, 2703-2708.	2.6	1
165	Screen-printed Hole Transport Material-free perovskite solar cell for water splitting incorporating Cu-NiCo2O4 catalyst. Materials Letters, 2022, 313, 131838.	2.6	1
166	Synthesis and Crystal Structure of Core-Modified Benziporphyrin: Thia-p-benziporphyrin ChemInform, 2004, 35, no.	0.0	0
167	The Synthesis and Crystal Structure of β-Substituted Thiaporphyrins with Novel Cyclic Substituents ChemInform, 2004, 35, no.	0.0	0
168	7.2: Integrated Organic Semiconductor Optoelectronic Devices as Real-time and Indicator-free Biosensor. Digest of Technical Papers SID International Symposium, 2011, 42, 70-73.	0.3	0
169	The Effect of Light-Harvesting Property of Oxasmaragdyrin and Its Impact as Hole Transporting Material in Perovskite Solar Cell. , 0, , .		0
170	Metalloporphyrin-Based Catalysts for CO2 Reduction: Effects of Metal Ions and Acidic Sites. ECS Meeting Abstracts, 2020, MA2020-01, 939-939.	0.0	0
171	Semiconducting Paddle-Wheel Metal–Organic Complex with a Compact Cu–S Cage. Journal of Physical Chemistry C, 2022, 126, 6300-6307.	3.1	0