Fucong Lyu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6252550/publications.pdf

Version: 2024-02-01

236912 223791 2,192 47 25 46 h-index citations g-index papers 48 48 48 3565 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Self-templated formation of twin-like metal-organic framework nanobricks as pre-catalysts for efficient water oxidation. Nano Research, 2022, 15, 2887-2894.	10.4	12
2	Nacre-liked material with tough and post-tunable mechanical properties. Journal of Materials Science and Technology, 2022, 114, 172-179.	10.7	4
3	Nanoscale Heterogeneities of Non-Noble Iron-Based Metallic Glasses toward Efficient Water Oxidation at Industrial-Level Current Densities. ACS Applied Materials & amp; Interfaces, 2022, 14, 10288-10297.	8.0	18
4	Tunable ultrathin dual-phase P-doped Bi2MoO6 nanosheets for advanced lithium and sodium storage. Nano Research, 2022, 15, 6128-6137.	10.4	8
5	Encapsulating atomic molybdenum into hierarchical nitrogen-doped carbon nanoboxes for efficient oxygen reduction. Journal of Colloid and Interface Science, 2022, 620, 67-76.	9.4	7
6	Mineral Hydrogel from Inorganic Salts: Biocompatible Synthesis, Allâ€inâ€One Charge Storage, and Possible Implications in the Origin of Life. Advanced Functional Materials, 2022, 32, .	14.9	14
7	Anodic self-assembly method for synthesizing hierarchical FeS/FeOx hollow nanospheres. Journal of Power Sources, 2021, 484, 229268.	7.8	7
8	The Twisting of Domeâ€Like Metamaterial from Brittle to Ductile. Advanced Science, 2021, 8, 2002701.	11.2	17
9	Facile Surfactantâ€, Reductantâ€, and Ag Saltâ€free Growth of Ag Nanoparticles with Controllable Size from 35 to 660 nm on Bulk Ag Materials. Chemistry - an Asian Journal, 2021, 16, 2249-2252.	3.3	5
10	Amorphous Highâ€Entropy Hydroxides of Tunable Wide Solar Absorption for Solar Water Evaporation. Particle and Particle Systems Characterization, 2021, 38, 2100094.	2.3	3
11	Synergistic function of iron and cobalt in metallic glasses for highly improving persulfate activation in water treatment. Journal of Alloys and Compounds, 2020, 822, 153574.	5.5	20
12	Fullâ€Color Reflective Filters in a Large Area with a Wideâ€Band Tunable Absorber Deposited by Oneâ€Step Magnetron Sputtering. Advanced Optical Materials, 2020, 8, 1901626.	7.3	16
13	Fe,N Co-Doped Mesoporous Carbon Nanosheets for Oxygen Reduction. ACS Applied Nano Materials, 2020, 3, 5637-5644.	5.0	16
14	Ultrafine Nanoporous Gold <i>via</i> Thiol Compound-Mediated Chemical Dealloying. Journal of Physical Chemistry C, 2020, 124, 10026-10031.	3.1	4
15	A Novel Multinary Intermetallic as an Active Electrocatalyst for Hydrogen Evolution. Advanced Materials, 2020, 32, e2000385.	21.0	169
16	Water Splitting: A Novel Multinary Intermetallic as an Active Electrocatalyst for Hydrogen Evolution (Adv. Mater. 21/2020). Advanced Materials, 2020, 32, 2070166.	21.0	6
17	High selective detection of mercury (II) ions by thioether side groups on metal-organic frameworks. Analytica Chimica Acta, 2019, 1081, 51-58.	5.4	74
18	Lamellarly Stacking Porous N, P Coâ€Doped Mo ₂ C/C Nanosheets as High Performance Anode for Lithiumâ€lon Batteries. Small, 2019, 15, e1805022.	10.0	43

#	Article	IF	Citations
19	Rare earth-free composites of carbon dots/metal–organic frameworks as white light emitting phosphors. Journal of Materials Chemistry C, 2019, 7, 2207-2211.	5. 5	68
20	A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Progress in Materials Science, 2019, 105, 100576.	32.8	209
21	Pt nanoparticles decorated heterostructured g-C3N4/Bi2MoO6 microplates with highly enhanced photocatalytic activities under visible light. Scientific Reports, 2019, 9, 7636.	3.3	60
22	Bottom-up synthesis of iron and nitrogen dual-doped porous carbon nanosheets for efficient oxygen reduction. Chemical Communications, 2019, 55, 5789-5792.	4.1	25
23	A Facile Strategy to Construct Silverâ€Modified, ZnOâ€Incorporated and Carbonâ€Coated Silicon/Porousâ€Carbon Nanofibers with Enhanced Lithium Storage. Small, 2019, 15, e1900436.	10.0	47
24	Large-scale synthesis of carbon dots/TiO ₂ nanocomposites for the photocatalytic color switching system. Nanoscale Advances, 2019, 1, 1819-1825.	4.6	18
25	UiO-66-NO ₂ as an Oxygen "Pump―for Enhancing Oxygen Reduction Reaction Performance. Chemistry of Materials, 2019, 31, 1646-1654.	6.7	33
26	Toward temperatureâ€dependent Bi ³⁺ â€related tunable emission in the <scp>YVO</scp> _{43+ phosphor. Journal of the American Ceramic Society, 2019, 102, 3488-3497.}	3.8	18
27	Construction of FeP Hollow Nanoparticles Densely Encapsulated in Carbon Nanosheet Frameworks for Efficient and Durable Electrocatalytic Hydrogen Production. Advanced Science, 2019, 6, 1801490.	11.2	68
28	A solid-state electrochemical sensing platform based on a supramolecular hydrogel. Sensors and Actuators B: Chemical, 2018, 262, 326-333.	7.8	41
29	Synergistic Effects of $C/l\pm$ -MoC and Ag for Efficient Oxygen Reduction Reaction. Journal of Physical Chemistry Letters, 2018, 9, 779-784.	4.6	33
30	Electrochemical antioxidant screening based on a chitosan hydrogel. Bioelectrochemistry, 2018, 121, 7-10.	4.6	43
31	Supramolecular hydrogel directed self-assembly of C- and N-doped hollow CuO as high-performance anode materials for Li-ion batteries. Chemical Communications, 2017, 53, 2138-2141.	4.1	41
32	Low-Cost and Novel Si-Based Gel for Li-Ion Batteries. ACS Applied Materials & Eamp; Interfaces, 2017, 9, 10699-10707.	8.0	42
33	MoC ultrafine nanoparticles confined in porous graphitic carbon as extremely stable anode materials for lithium- and sodium-ion batteries. Inorganic Chemistry Frontiers, 2017, 4, 289-295.	6.0	42
34	Facile fabrication of N/S-doped carbon nanotubes with Fe ₃ O ₄ nanocrystals enchased for lasting synergy as efficient oxygen reduction catalysts. Journal of Materials Chemistry A, 2017, 5, 13189-13195.	10.3	50
35	Biopolymer-chitosan based supramolecular hydrogels as solid state electrolytes for electrochemical energy storage. Chemical Communications, 2017, 53, 1615-1618.	4.1	91
36	Facile one-pot fabrication of \hat{l}_{\pm} -Fe2O3 nano-coffee beans by etching along [001] direction for high lithium storage. Science China Materials, 2017, 60, 1187-1195.	6.3	6

#	Article	IF	CITATIONS
37	Ultrafine N-doped carbon nanoparticles with controllable size to enhance electrocatalytic activity for oxygen reduction reaction. RSC Advances, 2016, 6, 110758-110764.	3.6	10
38	Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate. Nature Communications, 2016, 7, 13318.	12.8	226
39	Simple template fabrication of porous MnCo ₂ O ₄ hollow nanocages as high-performance cathode catalysts for rechargeable Li-O ₂ batteries. Nanotechnology, 2016, 27, 135703.	2.6	17
40	Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe–MOF as high-performance anode materials for lithium-ion batteries. RSC Advances, 2015, 5, 7356-7362.	3.6	57
41	Heterogeneous NiCo2O4@polypyrrole core/sheath nanowire arrays on Ni foam for high performance supercapacitors. Journal of Power Sources, 2015, 294, 120-127.	7.8	142
42	Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors. Nano Research, 2015, 8, 2744-2754.	10.4	90
43	Graphitized porous carbon prepared from pyrolysis of Sterculia scaphigera and its application in lithium ion batteries. RSC Advances, 2015, 5, 46558-46563.	3.6	9
44	Binder-free hydrogenated NiO–CoO hybrid electrodes for high performance supercapacitors. RSC Advances, 2015, 5, 31725-31731.	3.6	31
45	A high performance O ₂ selective membrane based on CAU-1-NH ₂ @polydopamine and the PMMA polymer for Li–air batteries. Chemical Communications, 2015, 51, 4364-4367.	4.1	107
46	BiOCl micro-assembles consisting of ultrafine nanoplates: A high performance electro-catalyst for air electrode of Al–air batteries. Journal of Power Sources, 2014, 263, 37-45.	7.8	51
47	Acceleration of the redox kinetics of $VO2+/VO2 + $ and $V3+/V2+ $ couples on carbon paper. Journal of Applied Electrochemistry, 2011, 41, 1183-1190.	2.9	74