
Maria Dolores Martin-Bermudo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6252520/publications.pdf Version: 2024-02-01

Maria Dolores

#	Article	IF	CITATIONS
1	A coarse-grained approach to model the dynamics of the actomyosin cortex. BMC Biology, 2022, 20, 90.	1.7	2
2	The basement membrane controls size and integrity of the Drosophila tracheal tubes. Cell Reports, 2022, 39, 110734.	2.9	6
3	Analysis of Actomyosin Oscillatory Dynamics Using a Coarse-Grained Model. Frontiers in Physics, 2022, 10, .	1.0	0
4	The careful control of Polo kinase by APC/C-Ube2C ensures the intercellular transport of germline centrosomes during <i>Drosophila</i> oogenesis. Open Biology, 2021, 11, 200371.	1.5	8
5	EGFRAP encodes a new negative regulator of the EGFR acting in both normal and oncogenic EGFR/Ras-driven tissue morphogenesis. PLoS Genetics, 2021, 17, e1009738.	1.5	5
6	LanB1 Cooperates With Kon-Tiki During Embryonic Muscle Migration in Drosophila. Frontiers in Cell and Developmental Biology, 2021, 9, 749723.	1.8	3
7	Integrins regulate epithelial cell shape by controlling the architecture and mechanical properties of basal actomyosin networks. PLoS Genetics, 2020, 16, e1008717.	1.5	26
8	Title is missing!. , 2020, 16, e1008717.		0
9	Title is missing!. , 2020, 16, e1008717.		0
10	Title is missing!. , 2020, 16, e1008717.		0
11	Title is missing!. , 2020, 16, e1008717.		0
12	Title is missing!. , 2020, 16, e1008717.		0
13	Title is missing!. , 2020, 16, e1008717.		Ο
14	Dissection of Nidogen function in Drosophila reveals tissue-specific mechanisms of basement membrane assembly. PLoS Genetics, 2018, 14, e1007483.	1.5	47
15	Scutoids are a geometrical solution to three-dimensional packing of epithelia. Nature Communications, 2018, 9, 2960.	5.8	98
16	DrosAfrica: Building an African biomedical research community using Drosophila. Seminars in Cell and Developmental Biology, 2017, 70, 58-64.	2.3	6
17	Drosophila Embryonic Hemocytes Produce Laminins to Strengthen Migratory Response. Cell Reports, 2017, 21, 1461-1470.	2.9	33
18	Laminin Levels Regulate Tissue Migration and Anterior-Posterior Polarity during Egg Morphogenesis in Drosophila. Cell Reports, 2017, 20, 211-223.	2.9	42

MARIA DOLORES

#	Article	IF	CITATIONS
19	ECM-Regulator timp Is Required for Stem Cell Niche Organization and Cyst Production in the Drosophila Ovary. PLoS Genetics, 2016, 12, e1005763.	1.5	33
20	Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis. Nature Communications, 2016, 7, 10746.	5.8	27
21	Alpha-Spectrin and Integrins act together to regulate actomyosin and columnarization, and to maintain a mono-layered follicular epithelium. Development (Cambridge), 2016, 143, 1388-99.	1.2	20
22	α-Spectrin and integrins act together to regulate actomyosin and columnarization, and to maintain a monolayered follicular epithelium. Journal of Cell Science, 2016, 129, e1.2-e1.2.	1.2	0
23	The <i>vav</i> oncogene antagonises EGFR signalling and regulates adherens junction dynamics during <i>Drosophila</i> eye development. Development (Cambridge), 2015, 142, 1492-501.	1.2	13
24	The conserved transmembrane proteoglycan Perdido/Kon-tiki is essential for myofibrillogenesis and sarcomeric structure in <i>Drosophila</i> . Journal of Cell Science, 2014, 127, 3162-73.	1.2	21
25	Integrins regulate epithelial cell differentiation by modulating Notch activity. Journal of Cell Science, 2014, 127, 4667-78.	1.2	19
26	The conserved transmembrane proteoglycan Perdido/Kon-tiki is essential for myofibrillogenesis and sarcomeric structure in Drosophila. Development (Cambridge), 2014, 141, e1506-e1506.	1.2	0
27	The GEF Vav regulates guided cell migration by coupling guidance receptor signalling to local Rac activation. Journal of Cell Science, 2013, 126, 2285-93.	1.2	39
28	A dual role for the βPS integrin <i>myospheroid</i> in mediating <i>Drosophila</i> embryonic macrophage migration. Journal of Cell Science, 2013, 126, 3475-84.	1.2	27
29	PS Integrins and Laminins: Key Regulators of Cell Migration during Drosophila Embryogenesis. PLoS ONE, 2011, 6, e23893.	1.1	36
30	The Ste20 kinase <i>misshapen</i> is essential for the invasive behaviour of ovarian epithelial cells in <i>Drosophila</i> . EMBO Reports, 2010, 11, 943-949.	2.0	23
31	The Guanine Exchange Factor <i>vav</i> Controls Axon Growth and Guidance during <i>Drosophila</i> Development. Journal of Neuroscience, 2010, 30, 2257-2267.	1.7	27
32	<i>ojoplano</i> -mediated basal constriction is essential for optic cup morphogenesis. Development (Cambridge), 2009, 136, 2165-2175.	1.2	84
33	<i>Drosophila</i> laminins act as key regulators of basement membrane assembly and morphogenesis. Development (Cambridge), 2009, 136, 4165-4176.	1.2	124
34	A role for the chaperone Hsp70 in the regulation of border cell migration in the Drosophila ovary. Mechanisms of Development, 2008, 125, 1048-1058.	1.7	22
35	Integrins contribute to the establishment and maintenance of cell polarity in the follicular epithelium of the Drosophila ovary. International Journal of Developmental Biology, 2008, 52, 925-932.	0.3	22
36	Integrin-ECM interactions regulate the changes in cell shape driving the morphogenesis of the Drosophila wing epithelium. Journal of Cell Science, 2007, 120, 1061-1071.	1.2	75

MARIA DOLORES

#	Article	IF	CITATIONS
37	Integrin Signaling Regulates Spindle Orientation in Drosophila to Preserve the Follicular-Epithelium Monolayer. Current Biology, 2007, 17, 683-688.	1.8	83
38	Multiple factors contribute to integrin-talin interactions in vivo. Journal of Cell Science, 2006, 119, 1632-1644.	1.2	56
39	Phylogenetic conservation of the regulatory and functional properties of the Vav oncoprotein family. Experimental Cell Research, 2005, 308, 364-380.	1.2	22
40	Specific tracheal migration is mediated by complementary expression of cell surface proteins. Genes and Development, 2001, 15, 1554-1562.	2.7	51
41	Integrins as Mediators of Morphogenesis in Drosophila. Developmental Biology, 2000, 223, 1-16.	0.9	137
42	Uncoupling integrin adhesion and signaling: the beta PS cytoplasmic domain is sufficient to regulate gene expression in the Drosophila embryo. Genes and Development, 1999, 13, 729-739.	2.7	70
43	Neurotactin Functions in Concert with Other Identified CAMs in Growth Cone Guidance in Drosophila. Neuron, 1998, 20, 221-233.	3.8	65
44	Absence of PS Integrins or Laminin A Affects Extracellular Adhesion, but Not Intracellular Assembly, of Hemiadherens and Neuromuscular Junctions inDrosophilaEmbryos. Developmental Biology, 1998, 196, 58-76.	0.9	110
45	Modulation of Integrin Activity is Vital for Morphogenesis. Journal of Cell Biology, 1998, 141, 1073-1081.	2.3	54
46	Specificity of PS integrin function during embryogenesis resides in the alpha subunit extracellular domain. EMBO Journal, 1997, 16, 4184-4193.	3.5	73
47	Intracellular signals direct integrin localization to sites of function in embryonic muscles Journal of Cell Biology, 1996, 134, 217-226.	2.3	52
48	Integrins Cooperate With the EGFR/Ras Pathway to Preserve Epithelia Survival and Architecture in Development and Oncogenesis. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2