
R Morris Bullock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/625229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beyond fossil fuelâ \in 'driven nitrogen transformations. Science, 2018, 360, .	12.6	1,379
2	A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s ^{â^'1} for H ₂ Production. Science, 2011, 333, 863-866.	12.6	1,070
3	Thermodynamic Hydricity of Transition Metal Hydrides. Chemical Reviews, 2016, 116, 8655-8692.	47.7	365
4	[Ni(P ^{Ph} ₂ N ^{C6H4X} ₂) ₂] ²⁺ Complexes as Electrocatalysts for H ₂ Production: Effect of Substituents, Acids, and Water on Catalytic Rates. Journal of the American Chemical Society, 2011, 133, 5861-5872.	13.7	357
5	Using nature's blueprint to expand catalysis with Earth-abundant metals. Science, 2020, 369, .	12.6	306
6	Catalytic Ionic Hydrogenations. Chemistry - A European Journal, 2004, 10, 2366-2374.	3.3	282
7	Abundant Metals Give Precious Hydrogenation Performance. Science, 2013, 342, 1054-1055.	12.6	268
8	Production of hydrogen by electrocatalysis: making the H–H bond by combining protons and hydrides. Chemical Communications, 2014, 50, 3125-3143.	4.1	244
9	An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen. Nature Chemistry, 2013, 5, 228-233.	13.6	218
10	Molecular Electrocatalysts for the Oxidation of Hydrogen and the Production of Hydrogen – The Role of Pendant Amines as Proton Relays. European Journal of Inorganic Chemistry, 2011, 2011, 1017-1027.	2.0	204
11	Heterobimetallic compounds linked by heterodifunctional ligands. Accounts of Chemical Research, 1987, 20, 167-173.	15.6	194
12	Toward Benchmarking in Catalysis Science: Best Practices, Challenges, and Opportunities. ACS Catalysis, 2016, 6, 2590-2602.	11.2	190
13	A recyclable catalyst that precipitates at the end of the reaction. Nature, 2003, 424, 530-532.	27.8	185
14	Hydrogen production using cobalt-based molecular catalysts containing a proton relay in the second coordination sphere. Energy and Environmental Science, 2008, 1, 167.	30.8	164
15	Mechanistic Insights into Catalytic H ₂ Oxidation by Ni Complexes Containing a Diphosphine Ligand with a Positioned Amine Base. Journal of the American Chemical Society, 2009, 131, 5935-5945.	13.7	161
16	Direct Determination of Equilibrium Potentials for Hydrogen Oxidation/Production by Open Circuit Potential Measurements in Acetonitrile. Inorganic Chemistry, 2013, 52, 3823-3835.	4.0	160
17	Surface Immobilization of Molecular Electrocatalysts for Energy Conversion. Chemistry - A European Journal, 2017, 23, 7626-7641.	3.3	159
18	Moving Protons with Pendant Amines: Proton Mobility in a Nickel Catalyst for Oxidation of Hydrogen. Journal of the American Chemical Society, 2011, 133, 14301-14312.	13.7	151

#	Article	IF	CITATIONS
19	Molecular Electrocatalysts for Oxidation of Hydrogen Using Earth-Abundant Metals: Shoving Protons Around with Proton Relays. Accounts of Chemical Research, 2015, 48, 2017-2026.	15.6	144
20	Studies of a Series of [Ni(P ^R ₂ N ^{Ph} ₂) ₂ (CH ₃ CN)] ^{2+< Complexes as Electrocatalysts for H₂ Production: Substituent Variation at the Phosphorus Atom of the P₂N₂ Ligand. Inorganic Chemistry, 2011, 50,}	(sup> 4.0	141
21	10908-10918. High Catalytic Rates for Hydrogen Production Using Nickel Electrocatalysts with Seven-Membered Cyclic Diphosphine Ligands Containing One Pendant Amine. Journal of the American Chemical Society, 2013, 135, 6033-6046.	13.7	137
22	Metal-acetylide bonding in (.eta.5-C5H5)Fe(CO)2C.tplbond.CR compounds. Measures of metal-d.piacetylidepi. interactions from photoelectron spectroscopy. Journal of the American Chemical Society, 1993, 115, 3276-3285.	13.7	129
23	Reversible Electrocatalytic Production and Oxidation of Hydrogen at Low Overpotentials by a Functional Hydrogenase Mimic. Angewandte Chemie - International Edition, 2012, 51, 3152-3155.	13.8	128
24	Proton Delivery and Removal in [Ni(P ^R ₂ N ^{R[′]2)₂]²⁺ Hydrogen Production and Oxidation Catalysts. Journal of the American Chemical Society, 2012, 134, 19409-19424.}	13.7	122
25	Homogeneous Catalysis with Inexpensive Metals:Â Ionic Hydrogenation of Ketones with Molybdenum and Tungsten Catalysts. Journal of the American Chemical Society, 2000, 122, 12594-12595.	13.7	121
26	Two Pathways for Electrocatalytic Oxidation of Hydrogen by a Nickel Bis(diphosphine) Complex with Pendant Amines in the Second Coordination Sphere. Journal of the American Chemical Society, 2013, 135, 9700-9712.	13.7	119
27	Ruthenium/zirconium complexes containing C2 bridges with bond orders of 3, 2, and 1. Synthesis and structures of Cp(PMe3)2RuCHnCHnZrClCp2 (n = 0, 1, 2). Journal of the American Chemical Society, 1991, 113, 8466-8477.	13.7	116
28	An Iron Catalyst for Ketone Hydrogenations under Mild Conditions. Angewandte Chemie - International Edition, 2007, 46, 7360-7363.	13.8	113
29	Hydrogen oxidation catalysis by a nickel diphosphine complex with pendant tert-butyl amines. Chemical Communications, 2010, 46, 8618.	4.1	107
30	Comparison of Cobalt and Nickel Complexes with Sterically Demanding Cyclic Diphosphine Ligands: Electrocatalytic H ₂ Production by [Co(P ^{<i>t</i>} ^{Bu} ₂ N ^{Ph} ₂)(CH ₃ CN) <s Organometallics, 2010, 29, 5390-5401.</s 	sub>3 <td>ມ<mark>105</mark> ມb≻](BF<su< td=""></su<></td>	ມ <mark>105</mark> ມb≻](BF <su< td=""></su<>
31	Hydride Transfer Reactions of Transition Metal Hydrides:Â Kinetic Hydricity of Metal Carbonyl Hydrides. Journal of the American Chemical Society, 1998, 120, 13121-13137.	13.7	104
32	[Ni(P ^{Ph} ₂ N ^{Bn} ₂) ₂ (CH ₃ CN)] ^{2+ as an Electrocatalyst for H₂ Production: Dependence on Acid Strength and Isomer Distribution. ACS Catalysis, 2011, 1, 777-785.}	+ 11.2	104
33	Protonation of Metal Hydrides by Strong Acids. Formation of an Equilibrium Mixture of Dihydride and Dihydrogen Complexes from Protonation of Cp*Os(CO)2H. Structural Characterization of [CpW(CO)2(PMe3)(H)2]+OTfâ°'. Organometallics, 1996, 15, 2504-2516.	2.3	103
34	Metal-Catalyzed Selective Deoxygenation of Diols to Alcohols. Angewandte Chemie - International Edition, 2001, 40, 3887-3890.	13.8	102
35	The Role of Pendant Amines in the Breaking and Forming of Molecular Hydrogen Catalyzed by Nickel Complexes. Chemistry - A European Journal, 2012, 18, 6493-6506.	3.3	102
36	Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model: An Feâ€Hâ‹â‹â‹Hâ€N Dihydrogen Bond Characterized by Neutron Diffraction. Angewandte Chemie - International Edition, 2014, 53, 5300-5304.	13.8	102

#	Article	IF	CITATIONS
37	Intramolecular hydrogen exchange among the coordinated methane fragments of Cp2W(H)CH3. Evidence for the formation of a .sigma. complex of methane prior to elimination. Journal of the American Chemical Society, 1989, 111, 3897-3908.	13.7	101
38	[Ni(P ^{Me} ₂ N ^{Ph} ₂) ₂](BF ₄) ₂]as an Electrocatalyst for H ₂ Production. ACS Catalysis, 2012, 2, 720-727.	sub} 11.2	95
39	Rh(CAAC)-Catalyzed Arene Hydrogenation: Evidence for Nanocatalysis and Sterically Controlled Site-Selective Hydrogenation. ACS Catalysis, 2018, 8, 8441-8449.	11.2	94
40	Hydrogen atom transfer reactions of transition-metal hydrides. Kinetics and mechanism of the hydrogenation of .alphacyclopropylstyrene by metal carbonyl hydrides. Journal of the American Chemical Society, 1990, 112, 6886-6898.	13.7	93
41	Synthesis, Characterization, and Reactivity of Fe Complexes Containing Cyclic Diazadiphosphine Ligands: The Role of the Pendant Base in Heterolytic Cleavage of H ₂ . Journal of the American Chemical Society, 2012, 134, 6257-6272.	13.7	91
42	Electrochemical Detection of Transient Cobalt Hydride Intermediates of Electrocatalytic Hydrogen Production. Journal of the American Chemical Society, 2016, 138, 8309-8318.	13.7	89
43	Rearrangement of a metal (η2-alkyne) complex to a metal vinylidene and subsequent reaction of the metal vinylidene to regenerate the alkyne. Journal of the Chemical Society Chemical Communications, 1989, , 165-167.	2.0	84
44	Ionic Hydrogenations of Hindered Olefins at Low Temperature. Hydride Transfer Reactions of Transition Metal Hydrides. Journal of the American Chemical Society, 1994, 116, 8602-8612.	13.7	83
45	Reduction of oxygen catalyzed by nickel diphosphine complexes with positioned pendant amines. Dalton Transactions, 2010, 39, 3001.	3.3	82
46	Thermochemical and Mechanistic Studies of Electrocatalytic Hydrogen Production by Cobalt Complexes Containing Pendant Amines. Inorganic Chemistry, 2013, 52, 14391-14403.	4.0	82
47	Et3NH+Co(CO)4-: hydrogen-bonded adduct or simple ion pair? Single-crystal neutron diffraction study at 15 K. Organometallics, 1992, 11, 2339-2341.	2.3	81
48	Production of H2 at fast rates using a nickel electrocatalyst in water–acetonitrile solutions. Chemical Communications, 2013, 49, 7767.	4.1	81
49	Dinitrogen Reduction by a Chromium(0) Complex Supported by a 16-Membered Phosphorus Macrocycle. Journal of the American Chemical Society, 2013, 135, 11493-11496.	13.7	81
50	Reversing the Tradeoff between Rate and Overpotential in Molecular Electrocatalysts for H ₂ Production. ACS Catalysis, 2018, 8, 3286-3296.	11.2	79
51	Acidic ionic liquid/water solution as both medium and proton source for electrocatalytic H ₂ evolution by [Ni(P ₂ N ₂) ₂] ²⁺ complexes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15634-15639.	7.1	78
52	Catalytic Silylation of N2and Synthesis of NH3and N2H4by Net Hydrogen Atom Transfer Reactions Using a Chromium P4Macrocycle. Journal of the American Chemical Society, 2018, 140, 2528-2536.	13.7	78
53	Comprehensive Thermodynamics of Nickel Hydride Bis(Diphosphine) Complexes: A Predictive Model through Computations. Organometallics, 2011, 30, 6108-6118.	2.3	76
54	Catalytic Deoxygenation of 1,2â€Propanediol to Give <i>n</i> â€Propanol. Advanced Synthesis and Catalysis, 2009, 351, 789-800.	4.3	75

#	Article	IF	CITATIONS
55	Catalytic N ₂ Reduction to Silylamines and Thermodynamics of N ₂ Binding at Square Planar Fe. Journal of the American Chemical Society, 2017, 139, 9291-9301.	13.7	72
56	lsotope Effects on Hydride Transfer Reactions from Transition Metal Hydrides to Trityl Cation. An Inverse Isotope Effect for a Hydride Transfer. Journal of the American Chemical Society, 1999, 121, 3150-3155.	13.7	71
57	Hydrogen Production Using Nickel Electrocatalysts with Pendant Amines: Ligand Effects on Rates and Overpotentials. ACS Catalysis, 2013, 3, 2527-2535.	11.2	70
58	Oxidation of Ammonia with Molecular Complexes. Journal of the American Chemical Society, 2020, 142, 17845-17858.	13.7	70
59	Hydride Transfer from (η5-C5Me5)(CO)2MH (M = Fe, Ru, Os) to Trityl Cation:  Different Products from Different Metals and the Kinetics of Hydride Transfer. Organometallics, 2002, 21, 2325-2331.	2.3	68
60	Molybdenum Carbonyl Complexes in the Solvent-Free Catalytic Hydrogenation of Ketones. Organometallics, 2005, 24, 6220-6229.	2.3	68
61	Computing Free Energy Landscapes: Application to Ni-based Electrocatalysts with Pendant Amines for H ₂ Production and Oxidation. ACS Catalysis, 2014, 4, 229-242.	11.2	68
62	Catalytic ionic hydrogenations of ketones using molybdenum and tungsten complexesBased on the presentation given at Dalton Discussion No. 4, 10–13th January 2002, Kloster Banz, Germany Dalton Transactions RSC, 2002, , 759-770.	2.3	67
63	Fast and efficient molecular electrocatalysts for H ₂ production: Using hydrogenase enzymes as guides. MRS Bulletin, 2011, 36, 39-47.	3.5	67
64	Rapid, Reversible Heterolytic Cleavage of Bound H ₂ . Journal of the American Chemical Society, 2013, 135, 11736-11739.	13.7	67
65	Experimental and Computational Mechanistic Studies Guiding the Rational Design of Molecular Electrocatalysts for Production and Oxidation of Hydrogen. Inorganic Chemistry, 2016, 55, 445-460.	4.0	67
66	Stabilization of Nickel Complexes with NiO···H–N Bonding Interactions Using Sterically Demanding Cyclic Diphosphine Ligands. Organometallics, 2012, 31, 144-156.	2.3	66
67	Cobalt Complexes Containing Pendant Amines in the Second Coordination Sphere as Electrocatalysts for H ₂ Production. Organometallics, 2014, 33, 5820-5833.	2.3	66
68	Hydride Transfer by Hydrido Transition-Metal Complexes. Ionic Hydrogenation of Aldehydes and Ketones, and Structural Characterization of an Alcohol Complex. Angewandte Chemie International Edition in English, 1992, 31, 1233-1235.	4.4	65
69	Toward Molecular Catalysts by Computer. Accounts of Chemical Research, 2015, 48, 248-255.	15.6	65
70	Heterobimetallic compounds linked by heterodifunctional ligands: synthesis and x-ray crystal structure of (CO)4MnMo(CO)3(.eta.5-C5H4PPh2). Organometallics, 1982, 1, 1591-1596.	2.3	62
71	Synthesis and Electrochemical Studies of Cobalt(III) Monohydride Complexes Containing Pendant Amines. Inorganic Chemistry, 2013, 52, 9975-9988.	4.0	62
72	Experimental Charge Density and Neutron Structural Study ofcis-HMn(CO)4PPh3:Â Comprehensive Analysis of Chemical Bonding and Evidence for a Câ^'H··Ĥâ^'Mn Hydrogen Bond. Inorganic Chemistry, 1998, 37, 6317-6328.	4.0	61

#	Article	IF	CITATIONS
73	Photogeneration of hydrogen from water by a robust dye-sensitized photocathode. Energy and Environmental Science, 2016, 9, 3693-3697.	30.8	61
74	A Tungsten Complex with a Bidentate, Hemilabile N-Heterocyclic Carbene Ligand, Facile Displacement of the Weakly Bound Wâ^'(CC) Bond, and the Vulnerability of the NHC Ligand toward Catalyst Deactivation during Ketone Hydrogenation. Organometallics, 2007, 26, 5079-5090.	2.3	59
75	Hydrogen exchange between the methyl and hydride ligands of dicyclopentadienylhydridomethyltungsten prior to methane elimination. Journal of the American Chemical Society, 1985, 107, 727-729.	13.7	58
76	Complexes containing a C2 bridge between an electron-rich metal and an electron-deficient metal. An agostic interaction in a RuCH2CH2Zr moiety. Journal of the American Chemical Society, 1990, 112, 3244-3245.	13.7	57
77	Metal-Hydrogen Bond Cleavage Reactions of Transition Metal Hydrides: Hydrogen Atom, Hydride, and Proton Transfer Reactions. Comments on Inorganic Chemistry, 1991, 12, 1-33.	5.2	56
78	Layer-by-Layer Molecular Assemblies for Dye-Sensitized Photoelectrosynthesis Cells Prepared by Atomic Layer Deposition. Journal of the American Chemical Society, 2017, 139, 14518-14525.	13.7	55
79	Ammonia Oxidation by Abstraction of Three Hydrogen Atoms from a Mo–NH ₃ Complex. Journal of the American Chemical Society, 2017, 139, 2916-2919.	13.7	54
80	Proton transfer from metal hydrides to metal alkynyl complexes. Remarkable carbon basicity of (C5H5)(PMe3)2RuC.tplbond.CCMe3. Journal of the American Chemical Society, 1987, 109, 8087-8089.	13.7	52
81	A rare terminal dinitrogen complex of chromium. Chemical Communications, 2011, 47, 12212.	4.1	52
82	Catalytic Ammonia Oxidation to Dinitrogen by Hydrogen Atom Abstraction. Angewandte Chemie - International Edition, 2019, 58, 11618-11624.	13.8	52
83	Electrocatalytic H ₂ production with a turnover frequency >10 ⁷ s ^{â^1} : the medium provides an increase in rate but not overpotential. Energy and Environmental Science, 2014, 7, 4013-4017.	30.8	49
84	A Hydrogen-Evolving Ni(P ₂ N ₂) ₂ Electrocatalyst Covalently Attached to a Glassy Carbon Electrode: Preparation, Characterization, and Catalysis. Comparisons with the Homogeneous Analogue. Inorganic Chemistry, 2014, 53, 6875-6885.	4.0	49
85	Controlling Proton Delivery through Catalyst Structural Dynamics. Angewandte Chemie - International Edition, 2016, 55, 13509-13513.	13.8	48
86	Reversible Heterolytic Cleavage of the H–H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride. Journal of the American Chemical Society, 2017, 139, 7376-7387.	13.7	48
87	Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines. Chemical Reviews, 2022, 122, 12427-12474.	47.7	48
88	Iron Complexes for the Electrocatalytic Oxidation of Hydrogen: Tuning Primary and Secondary Coordination Spheres. ACS Catalysis, 2014, 4, 1246-1260.	11.2	47
89	Modulating Hole Transport in Multilayered Photocathodes with Derivatized p-Type Nickel Oxide and Molecular Assemblies for Solar-Driven Water Splitting. Journal of Physical Chemistry Letters, 2017, 8, 4374-4379.	4.6	47
90	Synthesis of molybdenum-rhodium and molybdenum-iridium compounds linked by a heterodifunctional ligand and formation of molybdenum-iridium dihydrides by reaction with molecular hydrogen. Journal of the American Chemical Society, 1983, 105, 7574-7580.	13.7	46

#	Article	IF	CITATIONS
91	Ionic Hydrogenation of Alkynes by HOTf and Cp(CO)3WH. Journal of Organic Chemistry, 1995, 60, 7170-7176.	3.2	46
92	Operando XAFS Studies on Rh(CAAC)-Catalyzed Arene Hydrogenation. ACS Catalysis, 2019, 9, 4106-4114.	11.2	46
93	Diversion of Catalytic C–N Bond Formation to Catalytic Oxidation of NH ₃ through Modification of the Hydrogen Atom Abstractor. Journal of the American Chemical Society, 2020, 142, 3361-3365.	13.7	46
94	Homogeneous Ni Catalysts for H2Oxidation and Production: An Assessment of Theoretical Methods, from Density Functional Theory to Post Hartreeâ^'Fock Correlated Wave-Function Theory. Journal of Physical Chemistry A, 2010, 114, 12716-12724.	2.5	44
95	Heterolytic cleavage of H ₂ by bifunctional manganese(<scp>i</scp>) complexes: impact of ligand dynamics, electrophilicity, and base positioning. Chemical Science, 2014, 5, 4729-4741.	7.4	44
96	Manganese-Based Molecular Electrocatalysts for Oxidation of Hydrogen. ACS Catalysis, 2015, 5, 6838-6847.	11.2	43
97	An N-heterocyclic carbene as a bidentate hemilabile ligand: a synchrotron X-ray diffraction and density functional theory studyElectronic supplementary information (ESI) available: experimental details and characterization data; table of results for hydrogenation of 3-pentanone; Gaussian 98 summary for the W and Mo models; ORTEP plot of 1W and crystal data. See	4.1	41
98	Alcohol Complexes of Tungsten Prepared by Ionic Hydrogenations of Ketones. Organometallics, 2001, 20, 3337-3346.	2.3	40
99	Comment on "New Insights in the Electrocatalytic Proton Reduction and Hydrogen Oxidation by Bioinspired Catalysts: A DFT Investigationâ€: Journal of Physical Chemistry A, 2011, 115, 4861-4865.	2.5	40
100	Increasing the rate of hydrogen oxidation without increasing the overpotential: a bio-inspired iron molecular electrocatalyst with an outer coordination sphere proton relay. Chemical Science, 2015, 6, 2737-2745.	7.4	40
101	The Critical Role of Reductive Steps in the Nickelâ€Catalyzed Hydrogenolysis and Hydrolysis of Aryl Ether Câ^'O Bonds. Angewandte Chemie - International Edition, 2020, 59, 1445-1449.	13.8	40
102	Synthesis of Ruthenium Carbonyl Complexes with Phosphine or Substituted Cp Ligands, and Their Activity in the Catalytic Deoxygenation of 1,2-Propanediol. Inorganic Chemistry, 2009, 48, 6490-6500.	4.0	38
103	Ab Initio-Based Kinetic Modeling for the Design of Molecular Catalysts: The Case of H ₂ Production Electrocatalysts. ACS Catalysis, 2015, 5, 5436-5452.	11.2	38
104	Ionic hydrogenations using transition metal hydrides. Rapid hydrogenation of hindered alkenes at Iow temperature. Journal of the Chemical Society Chemical Communications, 1989, , 1447.	2.0	37
105	Protonation of (PCP)PtH To Give a Dihydrogen Complex. Organometallics, 2002, 21, 1504-1507.	2.3	37
106	Comprehensive Thermochemistry of W–H Bonding in the Metal Hydrides CpW(CO) ₂ (IMes)H, [CpW(CO) ₂ (IMes)H] ^{•+} , and [CpW(CO) ₂ (IMes)(H) ₂] ⁺ . Influence of an <i>N</i> -Heterocyclic Carbene Ligand on Metal Hydride Bond Energies. Journal of the American Chemical Society, 2011, 133, 14604-14613.	13.7	37
107	14604-14613. Iron Complexes Bearing Diphosphine Ligands with Positioned Pendant Amines as Electrocatalysts for the Oxidation of H ₂ . Organometallics, 2015, 34, 2747-2764.	2.3	37
108	Conformational Dynamics and Proton Relay Positioning in Nickel Catalysts for Hydrogen Production and Oxidation. Organometallics, 2013, 32, 7034-7042.	2.3	36

#	Article	IF	CITATIONS
109	Controlling proton movement: electrocatalytic oxidation of hydrogen by a nickel(<scp>ii</scp>) complex containing proton relays in the second and outer coordination spheres. Dalton Transactions, 2014, 43, 2744-2754.	3.3	35
110	Kinetic hydricity of transition-metal hydrides toward trityl cation. Organometallics, 1995, 14, 4031-4033.	2.3	34
111	Synthesis and reactivity of molybdenum and tungsten bis(dinitrogen) complexes supported by diphosphine chelates containing pendant amines. Dalton Transactions, 2012, 41, 4517.	3.3	34
112	A Silicon-Based Heterojunction Integrated with a Molecular Excited State in a Water-Splitting Tandem Cell. Journal of the American Chemical Society, 2019, 141, 10390-10398.	13.7	34
113	Cyclopropylbenzyl radical clocks. Journal of the Chemical Society Chemical Communications, 1989, , 1044.	2.0	33
114	Carbon-to-Metal Hydrogen Atom Transfer:Â Direct Observation Using Time-Resolved Infrared Spectroscopy. Journal of the American Chemical Society, 2005, 127, 15684-15685.	13.7	33
115	Synthesis, Structures, and Reactions of Manganese Complexes Containing Diphosphine Ligands with Pendant Amines. Organometallics, 2010, 29, 4532-4540.	2.3	33
116	Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170002.	3.4	33
117	Intrinsic barriers to atom transfer (abstraction) processes; self-exchange rates for Cp(CO)3M.bul. radical/Cp(CO)3M-X halogen couples. Journal of the American Chemical Society, 1991, 113, 9862-9864.	13.7	32
118	Protonation Studies of a Mono-Dinitrogen Complex of Chromium Supported by a 12-Membered Phosphorus Macrocycle Containing Pendant Amines. Inorganic Chemistry, 2015, 54, 4827-4839.	4.0	32
119	Reaction: Earth-Abundant Metal Catalysts for Energy Conversions. CheM, 2017, 2, 444-446.	11.7	32
120	Water-Soluble Tungsten Hydrides:  Synthesis, Structures, and Reactions of (C5H4CO2H)(CO)3WH and Related Complexes. Organometallics, 2000, 19, 824-833.	2.3	31
121	Palladium complexes with PCP ligands Inorganica Chimica Acta, 2002, 330, 52-58.	2.4	31
122	Synthesis and Structure of CpMo(CO)(dppe)H and Its Oxidation by Ph3C+. Inorganic Chemistry, 2006, 45, 4712-4720.	4.0	31
123	Insertion of isocyanides into the carbon-zirconium bond of ruthenium/zirconium dimetalloalkenes. Spectroscopic and structural comparisons of the .eta.2-iminoacyl complexes Cp(PMe3)2RuCH:CRC(NBu-tert)ZrClCp2 (R = H vs. R = Me) and kinetics of isomerization of a thermodynamically unstable .eta.2-iminoacyl complex. Organometallics. 1992. 11. 876-884.	2.3	29
124	Hydrogen atom transfer reactions of transition-metal hydrides. Utilization of a radical rearrangement in the determination of hydrogen atom transfer rates. Journal of the American Chemical Society, 1987, 109, 6542-6544.	13.7	28
125	Protonation of Ferrous Dinitrogen Complexes Containing a Diphosphine Ligand with a Pendent Amine. Inorganic Chemistry, 2013, 52, 4026-4039.	4.0	28
126	Water-assisted proton delivery and removal in bio-inspired hydrogen production catalysts. Dalton Transactions, 2015, 44, 10969-10979.	3.3	28

#	Article	IF	CITATIONS
127	Design and reactivity of pentapyridyl metal complexes for ammonia oxidation. Chemical Communications, 2019, 55, 5083-5086.	4.1	27
128	Catalytic Ionic Hydrogenation of Ketones by {[Cp*Ru(CO)2]2(μ-H)}+. Organometallics, 2010, 29, 1045-1048.	2.3	26
129	Protonation Studies of a Tungsten Dinitrogen Complex Supported by a Diphosphine Ligand Containing a Pendant Amine. Organometallics, 2014, 33, 2189-2200.	2.3	26
130	Putting chromium on the map for N ₂ reduction: production of hydrazine and ammonia. A study of cis-M(N ₂) ₂ (M = Cr, Mo, W) bis(diphosphine) complexes. Chemical Communications, 2016, 52, 9343-9346.	4.1	26
131	Alkyl nitrite complexes of ruthenium prepared by acid-base chemistry at the bound nitrosyl group. Inorganic Chemistry, 1980, 19, 865-869.	4.0	25
132	An uncommon bonding mode of a familiar ligand: a molybdenum complex with a four-electron donor chelating η3-PPh3 ligand, and its structural determination using synchrotron radiation. Chemical Communications, 1999, , 1629-1630.	4.1	25
133	Kinetic and Mechanistic Studies of Carbon-to-Metal Hydrogen Atom Transfer Involving Os-Centered Radicals: Evidence for Tunneling. Journal of the American Chemical Society, 2014, 136, 3572-3578.	13.7	25
134	H ₂ Binding, Splitting, and Net Hydrogen Atom Transfer at a Paramagnetic Iron Complex. Journal of the American Chemical Society, 2019, 141, 1871-1876.	13.7	25
135	Ether Complexes of Tungsten with Two Different Binding Modes: An O-Bound Ether and an η2-(CC) Vinyl Ether. Evidence for CH·À·Â·O Hydrogen Bonding of Vinylic CH Groups. Journal of the American Chemical Society, 1996, 118, 11134-11141.	13.7	24
136	Solvent-free ketone hydrogenations catalyzed by molybdenum complexesElectronic supplementary information (ESI) available: additional spectroscopic data and description of the synthetic procedures. See http://www.rsc.org/suppdata/cc/b4/b401760a/. Chemical Communications, 2004, , 1014.	4.1	24
137	Photochemical hydrogenolysis of the phosphorus-cyclopentadienyl bond of [cyclic] (CO)4MnMo(CO)3[.eta.5-C5H4P(C6H4Me-p)2] and formation of the phosphido-bridged metal hydride complex (CO)4Mn[.muP(C6H4Me-p)2](.muH)Mo(CO)2(C5H5). Organometallics, 1984, 3, 1100-1104.	2.3	23
138	Synthesis of Os2(CO)8(.muCHCH3) from a geminal ditriflate and its reversible carbonylation to a ketene-bridged diosmacycle. Journal of the American Chemical Society, 1988, 110, 7868-7870.	13.7	23
139	Comproportionation of Cationic and Anionic Tungsten Complexes Having an <i>N</i> -Heterocyclic Carbene Ligand To Give the Isolable 17-Electron Tungsten Radical CpW(CO) ₂ (IMes) [•] . Journal of the American Chemical Society, 2011, 133, 14593-14603.	13.7	23
140	Structural and Spectroscopic Characterization of 17- and 18-Electron Piano-Stool Complexes of Chromium. Thermochemical Analyses of Weak Cr–H Bonds. Inorganic Chemistry, 2013, 52, 1591-1603.	4.0	23
141	Intrinsic barriers to atom transfer: self-exchange reactions of CpM(CO)3X/CpM(CO)3- halide couples. Journal of the American Chemical Society, 1991, 113, 1225-1236.	13.7	22
142	Isolation of Two Agostic Isomers of an Organometallic Cation: Different Structures and Colors. Angewandte Chemie - International Edition, 2013, 52, 10190-10194.	13.8	22
143	X-ray and neutron diffraction studies of tricarbonyl(.etapentamethylcyclopentadienyl)hydridomolybdenum at 163 K. Inorganic Chemistry, 1993, 32, 4819-4824.	4.0	21
144	[Os2(CO)8(µ2-η2-C2H4)] as a vibrational model for 1,2-di-σ chemisorbed ethylene on metal surfaces. Journal of the Chemical Society Chemical Communications, 1989, .	2.0	20

#	Article	IF	CITATIONS
145	Facile Thermal W–W Bond Homolysis in the N-Heterocyclic Carbene Containing Tungsten Dimer [CpW(CO) ₂ (IMe)] ₂ . Organometallics, 2012, 31, 1775-1789.	2.3	20
146	Electrochemical oxidation of H ₂ catalyzed by ruthenium hydride complexes bearing P ₂ N ₂ ligands with pendant amines as proton relays. Energy and Environmental Science, 2014, 7, 3630-3639.	30.8	20
147	Electrocatalytic Hydrogen Production by [Ni(7P ^{Ph} ₂ N ^H) ₂] ²⁺ : Removing the Distinction Between Endo- and Exo-Protonation Sites. ACS Catalysis, 2015, 5, 2116-2123.	11.2	20
148	Molybdenum Hydride and Dihydride Complexes Bearing Diphosphine Ligands with a Pendant Amine: Formation of Complexes with Bound Amines. Inorganic Chemistry, 2015, 54, 6397-6409.	4.0	20
149	Preparation and reactions of Mn2(CO)9(.eta.1-aldehyde) complexes. Journal of the American Chemical Society, 1991, 113, 1659-1669.	13.7	19
150	Low-temperature neutron diffraction study on manganese-rhenium complexes HMn2Re(CO)14 and studies of a metal-metal exchange equilibrium that converts HMn2Re(CO)14 into HMnRe2(CO)14. Journal of the American Chemical Society, 1992, 114, 5125-5130.	13.7	19
151	Hydride transfer reactions of transition metal hydrides in the preparation of [Cp(CO)3W(η1-aldehyde)]+OTfâ~' and [Cp(CO)3W(η1-ketone)]+OTfâ~' complexes. Inorganica Chimica Acta, 1997, 259, 161-172.	2.4	19
152	Cationic Dihydrogen/Dihydride Complexes of Osmium:Â Structure and Dynamics. Organometallics, 2007, 26, 2291-2295.	2.3	19
153	Insertion and .betahydride elimination reactions of ruthenium/zirconium complexes containing C2 bridges with bond orders of 1, 2, and 3. Organometallics, 1992, 11, 4261-4267.	2.3	17
154	Triple hydrogen atom abstraction from Mn–NH ₃ complexes results in cyclophosphazenium cations. Chemical Communications, 2019, 55, 14058-14061.	4.1	17
155	Impact of Weak Agostic Interactions in Nickel Electrocatalysts for Hydrogen Oxidation. Organometallics, 2017, 36, 2275-2284.	2.3	16
156	Accelerating the insertion reactions of (NHC)Cu–H <i>via</i> remote ligand functionalization. Chemical Science, 2021, 12, 11495-11505.	7.4	16
157	Mechanistic Studies on the Insertion of Carbonyl Substrates into Cuâ€H: Different Rateâ€Limiting Steps as a Function of Electrophilicity. Angewandte Chemie - International Edition, 2020, 59, 8645-8653.	13.8	16
158	Dinuclear Metalloradicals Featuring Unsupported Metal–Metal Bonds. Angewandte Chemie - International Edition, 2012, 51, 8361-8364.	13.8	15
159	Synthesis and Protonation Studies of Molybdenum(0) Bis(diÂnitrogen) Complexes Supported by Diphosphine Ligands ÂContaining Pendant Amines. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 105-117.	1.2	15
160	Search for heterobimetallic dihydrides from the reaction of H2 with metal—metal bonds. Journal of Molecular Catalysis, 1982, 14, 283-292.	1.2	14
161	Efficient Synthesis of the Osâ^'Os Dimers [Cp(CO)2Os]2, [Cp*(CO)2Os]2, and [(iPr4C5H)(CO)2Os]2 and Computational Studies on the Relative Stabilities of Their Geometrical Isomers. Organometallics, 2006, 25, 2209-2215.	2.3	14
162	Proton and Electron Additions to Iron(II) Dinitrogen Complexes Containing Pendant Amines. Organometallics, 2014, 33, 1333-1336.	2.3	14

#	Article	IF	CITATIONS
163	Covalent attachment of diphosphine ligands to glassy carbon electrodes via Cu-catalyzed alkyne-azide cycloaddition. Metallation with Ni(<scp>ii</scp>). Dalton Transactions, 2015, 44, 12225-12233.	3.3	14
164	Anion control of tautomeric equilibria: Fe–H <i>vs.</i> N–H influenced by NHâ<⁻F hydrogen bonding. Chemical Science, 2019, 10, 1410-1418.	7.4	14
165	Hydridübertragung durch Hydridokomplexe, ionische Hydrierung von Aldehyden und Ketonen sowie Struktur eines Alkoholkomplexes. Angewandte Chemie, 1992, 104, 1280-1282.	2.0	13
166	H ₂ Oxidation Electrocatalysis Enabled by Metalâ€toâ€Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction. Angewandte Chemie - International Edition, 2018, 57, 13523-13527.	13.8	13
167	Protonation of metalî—,metal bonds in heterobimetallic compounds linked by a heterodifunctional ligand. Journal of Organometallic Chemistry, 1983, 251, 245-248.	1.8	12
168	Ring-opening hydroformylation of α-cyclopropylstyrene by HMn(CO)5, and structure of a novel Mn2(CO)9(I·1-aldehyde) complex. Journal of the Chemical Society Chemical Communications, 1989, , 261-263.	2.0	12
169	Four-Electron-Donor Hemilabile Î∙ ³ -PPh ₃ Ligand that Binds through a Câ•C Bond Rather than an Agostic Câ^'H Interaction, and Displacement of the Câ•C by Methyl Iodide or Water. Organometallics, 2008, 27, 3785-3795.	2.3	12
170	Metal-Centered 17-Electron Radicals CpM(CO) ₃ [•] (M = Cr, Mo, W): A Combined Negative Ion Photoelectron Spectroscopic and Theoretical Study. Organometallics, 2013, 32, 2084-2091.	2.3	12
171	Controlling Proton Delivery through Catalyst Structural Dynamics. Angewandte Chemie, 2016, 128, 13707-13711.	2.0	12
172	Evaluation of attractive interactions in the second coordination sphere of iron complexes containing pendant amines. Dalton Transactions, 2019, 48, 4867-4878.	3.3	12
173	Fluxional behavior of (CO)4Fe(u-AsMe2)Mo(CO)2(C5H5). Journal of Organometallic Chemistry, 1981, 218, C47-C50.	1.8	11
174	X-ray diffraction study of pentacarbonyl(.muhydrido)(nonacarbonyldimanganese)rhenium, HMn2Re(CO)14. Inorganic Chemistry, 1991, 30, 1414-1417.	4.0	11
175	6-(Alkylamino)-9-alkylpurines. A New Class of Potential Antipsychotic Agents. Journal of Medicinal Chemistry, 1997, 40, 3207-3216.	6.4	11
176	The Electrode as Organolithium Reagent: Catalyst-Free Covalent Attachment of Electrochemically Active Species to an Azide-Terminated Glassy Carbon Electrode Surface. Inorganic Chemistry, 2013, 52, 13674-13684.	4.0	10
177	Experimental and Digital Simulation Studies of the Electrochemical Oxidation of the Metal Anion [CpW(CO) ₂ (IMes)] ^{â[^]} and the 17-Electron Metal Radical CpW(CO) ₂ (IMes) [•] . Kinetics and Thermodynamics of Capture and Release of MeCN by a Metal Radical and a Metal Cation Organometallics 2011 30 4555-4563	2.3	9
178	MeCN by a Metal Radical and a Metal Cation. Organometallics 2011, 30, 4555-4563 Comparison of the One-Electron Oxidations of CO-Bridged vs Unbridged Bimetallic Complexes: Electron-Transfer Chemistry of Os ₂ Cp ₂ (CO) ₄ and Os ₂ Cp* ₂ (μ-CO) ₂ (CO) ₂ (CO) ₂	≈1203Tf50	1 37 Td (Î∙ <s< td=""></s<>
179	Organometallics, 2014, 33, 4716-4728. Catalytic Ammonia Oxidation to Dinitrogen by Hydrogen Atom Abstraction. Angewandte Chemie, 2019, 131, 11744-11750.	2.0	9
180	Pulse Radiolysis Studies of Water-Soluble Tungsten Hydride Complexes:Â One-Electron Reduction of Metal Hydrides and Hydrogen Atom Transfer Reactions. Organometallics, 2001, 20, 3729-3737.	2.3	8

#	Article	IF	CITATIONS
181	Hydroformylation of the C.tplbond.C bond of (C5H5)(PMe3)2RuC.tplbond.CCH3 by HRe(CO)5 to give an .eta.1-aldehyde complex of rhenium. Journal of the American Chemical Society, 1989, 111, 2741-2743.	13.7	7
182	Evaluation of the Role of Water in the H ₂ Bond Formation by Ni(II)-Based Electrocatalysts. Journal of Chemical Theory and Computation, 2013, 9, 3505-3514.	5.3	7
183	Bio-Inspired Molecular Catalysts for Hydrogen Oxidation and Hydrogen Production. ACS Symposium Series, 2013, , 89-111.	0.5	7
184	Outer Coordination Sphere Proton Relay Base and Proximity Effects on Hydrogen Oxidation with Iron Electrocatalysts. Organometallics, 2019, 38, 1391-1396.	2.3	7
185	Formation of a manganese alkyl complex as an intermediate in the ring-opening hydroformylation of α-cyclopropylstyrene by HMn(CO)5. Journal of Organometallic Chemistry, 1992, 429, 345-368.	1.8	6
186	Photoinduced atom-transfer reactions between transition-metal centres. Pure and Applied Chemistry, 1995, 67, 47-54.	1.9	6
187	A Mercurial Route to a Cobalt Dihydrogen Complex. Angewandte Chemie - International Edition, 2011, 50, 4050-4052.	13.8	6
188	The Critical Role of Reductive Steps in the Nickel atalyzed Hydrogenolysis and Hydrolysis of Aryl Ether Câ~'O Bonds. Angewandte Chemie, 2020, 132, 1461-1465.	2.0	6
189	Weakening the N–H Bonds of NH ₃ Ligands: Triple Hydrogen-Atom Abstraction to Form a Chromium(V) Nitride. Inorganic Chemistry, 2022, 61, 11165-11172.	4.0	6
190	Structural and computational studies of Cp(CO)2(PCy3)MoFBF3, a complex with a bound ligand. Inorganica Chimica Acta, 2010, 363, 581-585.	2.4	5
191	Isolation of Two Agostic Isomers of an Organometallic Cation: Different Structures and Colors. Angewandte Chemie, 2013, 125, 10380-10384.	2.0	5
192	Controlling P–C/C–H Bond Cleavage in Nickel Bis(diphosphine) Complexes: Reactivity Scope, Mechanism, and Computations. Organometallics, 2020, 39, 3306-3314.	2.3	5
193	Mechanistic Studies on the Insertion of Carbonyl Substrates into Cuâ€H: Different Rate‣imiting Steps as a Function of Electrophilicity. Angewandte Chemie, 2020, 132, 8723-8731.	2.0	5
194	Splitting of multiple hydrogen molecules by bioinspired diniobium metal complexes: a DFT study. Dalton Transactions, 2021, 50, 840-849.	3.3	5
195	Computational Investigations of the Reactivity of Metalloporphyrins for Ammonia Oxidation. Topics in Catalysis, 2022, 65, 341-353.	2.8	4
196	Facile Pâ^'C/Câ^'H Bondâ€Cleavage Reactivity of Nickel Bis(diphosphine) Complexes. Chemistry - A European Journal, 2016, 22, 9493-9497.	3.3	3
197	Influence of Surface and Structural Variations in Donor–Acceptor–Donor Sensitizers on Photoelectrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 47499-47510.	8.0	3
198	Controlling Reaction Routes in Nobleâ€Metalâ€Catalyzed Conversion of Aryl Ethers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	3

R Morris Bullock

#	ARTICLE	IF	CITATIONS
199	Virtual Special Issue on Catalysis at the U.S. Department of Energy's National Laboratories. ACS Catalysis, 2016, 6, 3227-3235.	11.2	2
200	Controlling Reaction Routes in Nobleâ€Metalâ€Catalyzed Conversion of Aryl Ethers. Angewandte Chemie, 0, , .	2.0	2
201	Frontispiz: Catalytic Ammonia Oxidation to Dinitrogen by Hydrogen Atom Abstraction. Angewandte Chemie, 2019, 131, .	2.0	1
202	Solvent-Free Ketone Hydrogenations Catalyzed by Molybdenum Complexes ChemInform, 2004, 35, no.	0.0	0
203	Frontispiece: Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model: An Fe-Hâ‹â‹â‹H-N Dihydroge Bond Characterized by Neutron Diffraction. Angewandte Chemie - International Edition, 2014, 53, n/a-n/a.	า 13.8	0
204	Frontispiz: Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model: An Fe-Hâ‹â‹â‹A-N Dihydrogen Bond Characterized by Neutron Diffraction. Angewandte Chemie, 2014, 126, n/a-n/a.	2.0	0
205	H 2 Oxidation Electrocatalysis Enabled by Metalâ€ŧoâ€Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction. Angewandte Chemie, 2018, 130, 13711-13715.	2.0	0
206	Frontispiece: Catalytic Ammonia Oxidation to Dinitrogen by Hydrogen Atom Abstraction. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
207	Frontispiece: Surface Immobilization of Molecular Electrocatalysts for Energy Conversion. Chemistry - A European Journal, 2017, 23, .	3.3	0