
Keith A Trujillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6252280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use and abuse of dissociative and psychedelic drugs in adolescence. Pharmacology Biochemistry and Behavior, 2021, 203, 173129.	1.3	27
2	Ketamine sensitization: Influence of dose, environment, social isolation and treatment interval. Behavioural Brain Research, 2020, 378, 112271.	1.2	20
3	Joe L. Martinez Jr. (1944–2020). Science, 2020, 370, 297-297.	6.0	0
4	Ketamine beyond anesthesia: Antidepressant effects and abuse potential. Behavioural Brain Research, 2020, 394, 112841.	1.2	9
5	Long-lasting effects of repeated ketamine administration in adult and adolescent rats. Behavioural Brain Research, 2019, 369, 111928.	1.2	35
6	Neurotoxicity of low-level lead exposure: History, mechanisms of action, and behavioral effects in humans and preclinical models. NeuroToxicology, 2019, 73, 58-80.	1.4	117
7	Basic information on psychotropic drugs, receptor systems, and the brain , 2019, , 17-39.		0
8	Differences between adolescents and adults in the acute effects of PCP and ketamine and in sensitization following intermittent administration. Pharmacology Biochemistry and Behavior, 2017, 157, 24-34.	1.3	26
9	The Global Challenge in Neuroscience Education and Training: The MBL Perspective. Neuron, 2016, 92, 632-636.	3.8	6
10	Powerful behavioral interactions between methamphetamine and morphine. Pharmacology Biochemistry and Behavior, 2011, 99, 451-458.	1.3	63
11	The Neurobehavioral Pharmacology of Ketamine: Implications for Drug Abuse, Addiction, and Psychiatric Disorders. ILAR Journal, 2011, 52, 366-378.	1.8	46
12	NMDA receptor antagonists inhibit opiate antinociceptive tolerance and locomotor sensitization in rats. Psychopharmacology, 2008, 196, 497-509.	1.5	52
13	Increased Response to Ketamine Following Treatment at Long Intervals: Implications for Intermittent Use. Biological Psychiatry, 2008, 63, 178-183.	0.7	60
14	Biological research on drug abuse and addiction in Hispanics: Current status and future directions. Drug and Alcohol Dependence, 2006, 84, S17-S28.	1.6	7
15	Improving the Climate in Research and Scientific Training Environments for Members of Underrepresented Minorities. Neuroscientist, 2004, 10, 26-30.	2.6	18
16	Continuous administration of opioids produces locomotor sensitization. Pharmacology Biochemistry and Behavior, 2004, 79, 661-669.	1.3	22
17	Effects of NMDA receptor antagonists on acute $\hat{l}^1\!\!/ 4$ -opioid analgesia in the rat. Pharmacology Biochemistry and Behavior, 2003, 76, 361-372.	1.3	38
18	The neurobiology of opiate tolerance, dependence and sensitization: Mechanisms of NMDA receptor-dependent synaptic plasticity. Neurotoxicity Research, 2002, 4, 373-391.	1.3	78

Keith A Trujillo

#	Article	IF	CITATIONS
19	Are NMDA receptors involved in opiate-induced neural and behavioral plasticity?. Psychopharmacology, 2000, 151, 121-141.	1.5	128
20	Cellular and molecular mechanisms of opioid tolerance and dependence. Pain Forum, 1999, 8, 29-33.	1.1	20
21	Motivational Properties of Oxytocin in the Conditioned Place Preference Paradigm. Neuropsychopharmacology, 1997, 17, 353-359.	2.8	78
22	Effects of Noncompetitive N-Methyl-?-Aspartate Receptor Antagonists on Opiate Tolerance and Physical Dependence. Neuropsychopharmacology, 1995, 13, 301-307.	2.8	65
23	Does chronic nociceptive stimulation alter the development of morphine tolerance?. Brain Research, 1995, 680, 173-179.	1.1	28
24	Effects of chronic opiate and opioid antagonist treatment on striatal opioid peptides. Brain Research, 1995, 698, 69-78.	1.1	24
25	Excitatory amino acids and drugs of abuse: a role for N-methyl-d-aspartate receptors in drug tolerance, sensitization and physical dependence. Drug and Alcohol Dependence, 1995, 38, 139-154.	1.6	154
26	Inhibition of opiate tolerance by non-competitive N-d-aspartate receptor antagonists. Brain Research, 1994, 633, 178-188.	1.1	185
27	Pre- and Posttranslational Regulation of ?-Endorphin Biosynthesis in the CNS: Effects of Chronic Naltrexone Treatment. Journal of Neurochemistry, 1993, 60, 40-49.	2.1	34
28	MK-801 inhibits the development of morphine tolerance at spinal sites. Brain Research, 1993, 626, 332-334.	1.1	84
29	Prodynorphin Biosynthesis and Posttranslational Processing. Handbook of Experimental Pharmacology, 1993, , 449-470.	0.9	17
30	NMDA receptor antagonist MK-801 and opiates. Biomedicine and Pharmacotherapy, 1991, 45, 423.	2.5	0
31	The NMDA receptor antagonist MK-801 increases morphine catalepsy and lethality. Pharmacology Biochemistry and Behavior, 1991, 38, 673-675.	1.3	58
32	Naloxone blockade of amphetamine place preference conditioning. Psychopharmacology, 1991, 104, 265-274.	1.5	88
33	Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science, 1991, 251, 85-87.	6.0	1,140
34	Regulation of striatonigral prodynorphin peptides by dopaminergic agents. Brain Research, 1990, 518, 244-256.	1.1	52
35	Naloxone suppression of self-stimulation is independent of response difficulty. Pharmacology Biochemistry and Behavior, 1989, 33, 147-155.	1.3	11
36	Effects of opiate antagonists and their quaternary analogues on nucleus accumbens self-stimulation. Behavioural Brain Research, 1989, 33, 181-188.	1.2	9

#	Article	IF	CITATIONS
37	Opiate antagonists and self-stimulation: extinction-like response patterns suggest selective reward deficit. Brain Research, 1989, 492, 15-28.	1.1	27
38	Neuroanatomical and Neurochemical Substrates of Drug-Seeking Behavior: Overview and Future Directions. , 1989, , 29-91.		22