
Yang Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6252274/publications.pdf Version: 2024-02-01

VANC VIA

#	Article	IF	CITATIONS
1	Erythrocyte transglutaminase-2 combats hypoxia and chronic kidney disease by promoting oxygen delivery and carnitine homeostasis. Cell Metabolism, 2022, 34, 299-316.e6.	16.2	28
2	p97 dysfunction underlies a loss of quality control of damaged membrane proteins and promotes oxidative stress and sickling in sickle cell disease. FASEB Journal, 2022, 36, e22246.	0.5	5
3	Blood donor exposome and impact of common drugs on red blood cell metabolism. JCI Insight, 2021, 6,	5.0	39
4	The equilibrative nucleoside transporter ENT1 is critical for nucleotide homeostasis and optimal erythropoiesis. Blood, 2021, 137, 3548-3562.	1.4	16
5	Erythrocyte adenosine A2B receptor prevents cognitive and auditory dysfunction by promoting hypoxic and metabolic reprogramming. PLoS Biology, 2021, 19, e3001239.	5.6	11
6	Generation of Distal Renal Segments Involves a Unique Population of Aqp2+ Progenitor Cells. Journal of the American Society of Nephrology: JASN, 2021, 32, 3035-3049.	6.1	13
7	Hypoxiaâ€Inducible Factorâ€2α Reprograms Liver Macrophages to Protect Against Acute Liver Injury Through the Production of Interleukinâ€6. Hepatology, 2020, 71, 2105-2117.	7.3	50
8	Overexpressed PERK suppresses the neurodegenerative phenotypes in PINK1B9 flies by enhancing mitochondrial function. Neurochemistry International, 2020, 140, 104825.	3.8	0
9	Adenosine A2B receptor: A pathogenic factor and a therapeutic target for sensorineural hearing loss. FASEB Journal, 2020, 34, 15771-15787.	0.5	9
10	Erythrocyte Metabolic Reprogramming by Sphingosine 1-Phosphate in Chronic Kidney Disease and Therapies. Circulation Research, 2020, 127, 360-375.	4.5	45
11	The pedigree analysis and prenatal diagnosis of Hong Kongαα Thalassemia and the sequence analysis of Hong Kongαα Allele. Molecular Genetics & Genomic Medicine, 2020, 8, e1285.	1.2	2
12	Erythrocyte adaptive metabolic reprogramming under physiological and pathological hypoxia. Current Opinion in Hematology, 2020, 27, 155-162.	2.5	25
13	Maternal Supplementation of Inositols, Fucoxanthin, and Hydroxytyrosol in Pregnant Murine Models of Hypertension. American Journal of Hypertension, 2020, 33, 652-659.	2.0	7
14	Alteration of liver immunity by increasing inflammatory response during co-administration of methamphetamine and atazanavir. Immunopharmacology and Immunotoxicology, 2020, 42, 237-245.	2.4	1
15	Maternal erythrocyte ENT1–mediated AMPK activation counteracts placental hypoxia and supports fetal growth. JCI Insight, 2020, 5, .	5.0	16
16	GATA factor-regulated solute carrier ensemble reveals a nucleoside transporter-dependent differentiation mechanism. PLoS Genetics, 2020, 16, e1009286.	3.5	13
17	Circadian period 2: a missing beneficial factor in sickle cell disease by lowering pulmonary inflammation, iron overload, and mortality. FASEB Journal, 2019, 33, 10528-10537.	0.5	5
18	Erythrocyte Adenosine A2B Receptor-Mediated AMPK Activation: A Missing Component Counteracting CKD by Promoting Oxygen Delivery. Journal of the American Society of Nephrology: JASN, 2019, 30, 1413-1424.	6.1	17

#	Article	IF	CITATIONS
19	Differential role of adenosine signaling cascade in acute and chronic pain. Neuroscience Letters, 2019, 712, 134483.	2.1	9
20	Tissue Transglutaminase-Mediated AT1 Receptor Sensitization Underlies Pro-inflammatory Cytokine LIGHT-Induced Hypertension. American Journal of Hypertension, 2019, 32, 476-485.	2.0	14
21	Adenosine and hyaluronan promote lung fibrosis and pulmonary hypertension in combined pulmonary fibrosis and emphysema. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	31
22	Deubiquitylase USP7 regulates human terminal erythroid differentiation by stabilizing GATA1. Haematologica, 2019, 104, 2178-2188.	3.5	28
23	Metabolomic and molecular insights into sickle cell disease and innovative therapies. Blood Advances, 2019, 3, 1347-1355.	5.2	32
24	Comprehensive Characterization of Alternative Polyadenylation in Human Cancer. Journal of the National Cancer Institute, 2018, 110, 379-389.	6.3	111
25	Transient receptor potential vanilloid 4–expressing macrophages and keratinocytes contribute differentially to allergic and nonallergic chronic itch. Journal of Allergy and Clinical Immunology, 2018, 141, 608-619.e7.	2.9	85
26	Elevated ecto-5′-nucleotidase: a missing pathogenic factor and new therapeutic target for sickle cell disease. Blood Advances, 2018, 2, 1957-1968.	5.2	14
27	Red blood cells as an organ? How deep omics characterization of the most abundant cell in the human body highlights other systemic metabolic functions beyond oxygen transport. Expert Review of Proteomics, 2018, 15, 855-864.	3.0	81
28	Switching-Off Adora2b in Vascular Smooth Muscle Cells Halts the Development of Pulmonary Hypertension. Frontiers in Physiology, 2018, 9, 555.	2.8	21
29	Sphingosineâ€1â€phosphate receptor 1 mediates elevated ILâ€6 signaling to promote chronic inflammation and multitissue damage in sickle cell disease. FASEB Journal, 2018, 32, 2855-2865.	0.5	35
30	Elevated Circadian Period 2: A Missing Beneficial Factor in Sickle Cell Disease By Lowering Pulmonary Inflammation, Iron Overload and Mortality. Blood, 2018, 132, 3644-3644.	1.4	0
31	Iron overload correlates with serum liver fibrotic markers and liver dysfunction: Potential new methods to predict iron overloadâ€related liver fibrosis in thalassemia patients. United European Gastroenterology Journal, 2017, 5, 94-103.	3.8	11
32	Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent. Nature Communications, 2017, 8, 14108.	12.8	81
33	Erythrocyte purinergic signaling components underlie hypoxia adaptation. Journal of Applied Physiology, 2017, 123, 951-956.	2.5	25
34	MiR133b is involved in endogenous hydrogen sulfide suppression of sFlt-1 production in human placenta. Placenta, 2017, 52, 33-40.	1.5	23
35	Structural and Functional Insight of Sphingosine 1-Phosphate-Mediated Pathogenic Metabolic Reprogramming in Sickle Cell Disease. Scientific Reports, 2017, 7, 15281.	3.3	47
36	Metabolomic Approach in Probing Drug Candidates. Current Topics in Medicinal Chemistry, 2017, 17, 1741-1749.	2.1	4

#	Article	IF	CITATIONS
37	Purinergic control of red blood cell metabolism: novel strategies to improve red cell storage quality. Blood Transfusion, 2017, 15, 535-542.	0.4	16
38	Transglutaminase is a Critical Link Between Inflammation and Hypertension. Journal of the American Heart Association, 2016, 5, .	3.7	12
39	Hypoxia-mediated impaired erythrocyte Lands' Cycle is pathogenic for sickle cell disease. Scientific Reports, 2016, 6, 29637.	3.3	65
40	Sustained Elevated Adenosine via ADORA2B Promotes Chronic Pain through Neuro-immune Interaction. Cell Reports, 2016, 16, 106-119.	6.4	61
41	Beneficial Role of Erythrocyte Adenosine A2B Receptor–Mediated AMP-Activated Protein Kinase Activation in High-Altitude Hypoxia. Circulation, 2016, 134, 405-421.	1.6	115
42	Visualizing red blood cell sickling and the effects of inhibition of sphingosine kinase 1 using soft x-ray tomography. Journal of Cell Science, 2016, 129, 3511-7.	2.0	21
43	AltitudeOmics: Red Blood Cell Metabolic Adaptation to High Altitude Hypoxia. Journal of Proteome Research, 2016, 15, 3883-3895.	3.7	98
44	Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia. Nature Communications, 2016, 7, 12086.	12.8	163
45	A pre-eclampsia-associated Epstein-Barr virus antibody cross-reacts with placental GPR50. Clinical Immunology, 2016, 168, 64-71.	3.2	8
46	Minireview: Multiomic candidate biomarkers for clinical manifestations of sickle cell severity: Early steps to precision medicine. Experimental Biology and Medicine, 2016, 241, 772-781.	2.4	16
47	Extracellular adenosine levels are associated with the progression and exacerbation of pulmonary fibrosis. FASEB Journal, 2016, 30, 874-883.	0.5	38
48	Structural and Functional Insight of Sphingosine 1-Phosphate-Mediated Pathogenic Metabolic Reprogramming in Sickle Cell Disease. Blood, 2016, 128, 2474-2474.	1.4	0
49	Elevated Transglutaminase Activity Triggers Angiotensin Receptor Activating Autoantibody Production and Pathophysiology of Preeclampsia. Journal of the American Heart Association, 2015, 4, .	3.7	23
50	Elevated adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte sphingosine kinase 1 activity. Blood, 2015, 125, 1643-1652.	1.4	44
51	Elevated Endothelial Hypoxia-Inducible Factor-1α Contributes to Glomerular Injury and Promotes Hypertensive Chronic Kidney Disease. Hypertension, 2015, 66, 75-84.	2.7	59
52	Beneficial and detrimental role of adenosine signaling in diseases and therapy. Journal of Applied Physiology, 2015, 119, 1173-1182.	2.5	67
53	Hypoxia-Independent Upregulation of Placental Hypoxia Inducible Factor-1α Gene Expression Contributes to the Pathogenesis of Preeclampsia. Hypertension, 2015, 65, 1307-1315.	2.7	83
54	Response to Letter Regarding Article, "Elevated Placental Adenosine Signaling Contributes to the Pathogenesis of Preeclampsia― Circulation, 2015, 132, e222-3.	1.6	0

#	Article	IF	CITATIONS
55	Association between endothelial nitric oxide synthase 894G>T polymorphism and prostate cancer risk: a meta-analysis of literature studies. Tumor Biology, 2014, 35, 11727-11733.	1.8	14
56	Excess LIGHT Contributes to Placental Impairment, Increased Secretion of Vasoactive Factors, Hypertension, and Proteinuria in Preeclampsia. Hypertension, 2014, 63, 595-606.	2.7	37
57	Excess adenosine A2B receptor signaling contributes to priapism through HIFâ€1α mediated reduction of PDE5 gene expression. FASEB Journal, 2014, 28, 2725-2735.	0.5	34
58	PMA induces SnoN proteolysis and CD61 expression through an autocrine mechanism. Cellular Signalling, 2014, 26, 1369-1378.	3.6	5
59	Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression. Journal of Clinical Investigation, 2014, 124, 2750-2761.	8.2	112
60	End-Alveolar Carbon Monoxide As a Measure of Erythrocyte Survival and Hemolytic Severity in Sickle Cell Disease. Blood, 2014, 124, 2696-2696.	1.4	0
61	Sphingosine 1-Phosphate (S1P)/S1P Receptor 1 Pathway Has an Essential Role for Sickle Cell Disease. Blood, 2014, 124, 4063-4063.	1.4	0
62	Functions and Regulation of Erythrocyte Equlibrative Nucleoside Transporter 1 (ENT1) in Acute Hypoxia Mediated Tissue Injury. Blood, 2014, 124, 2666-2666.	1.4	10
63	Elevated Adenosine Signaling Via Adenosine A2B Receptor Induces Normal and Sickle Erythrocyte Sphingosine Kinase 1 Activity. Blood, 2014, 124, 4067-4067.	1.4	1
64	Sphingosine 1-Phosphate Induces Erythrocytes Sickling in Sickle Cell Disease By Promoting Hemoglobin S Aggregation. Blood, 2014, 124, 2673-2673.	1.4	0
65	Angiotensin Receptor Agonistic Autoantibodies and Hypertension. Circulation Research, 2013, 113, 78-87.	4.5	150
66	Elevated Ecto-5'-nucleotidase-Mediated Increased Renal Adenosine Signaling Via A2B Adenosine Receptor Contributes to Chronic Hypertension. Circulation Research, 2013, 112, 1466-1478.	4.5	74
67	Adenosine signaling in normal and sickle erythrocytes and beyond. Microbes and Infection, 2012, 14, 863-873.	1.9	40
68	Targeted Expression of Cre Recombinase Provokes Placental-Specific DNA Recombination in Transgenic Mice. PLoS ONE, 2012, 7, e29236.	2.5	15
69	A _{2B} adenosine receptor contributes to penile erection <i>via</i> PI3K/AKT signaling cascadeâ€mediated eNOS activation. FASEB Journal, 2011, 25, 2823-2830.	0.5	36
70	Detrimental effects of adenosine signaling in sickle cell disease. Nature Medicine, 2011, 17, 79-86.	30.7	172
71	Receptor-activating autoantibodies and disease: preeclampsia and beyond. Expert Review of Clinical Immunology, 2011, 7, 659-674.	3.0	61
72	Increased adenosine contributes to penile fibrosis, a dangerous feature of priapism, <i>via</i> A _{2B} adenosine receptor signaling. FASEB Journal, 2010, 24, 740-749.	0.5	75

#	Article	IF	CITATIONS
73	Is preeclampsia an autoimmune disease?. Clinical Immunology, 2009, 133, 1-12.	3.2	54
74	Angiotensin Receptors, Autoimmunity, and Preeclampsia. Journal of Immunology, 2007, 179, 3391-3395.	0.8	54
75	Potential Roles of Angiotensin Receptor-Activating Autoantibody in the Pathophysiology of Preeclampsia. Hypertension, 2007, 50, 269-275.	2.7	79
76	Mammalian Target of Rapamycin and Protein Kinase A Signaling Mediate the Cardiac Transcriptional Response to Glutamine. Journal of Biological Chemistry, 2003, 278, 13143-13150.	3.4	55
77	Title is missing!. Molecular and Cellular Biochemistry, 1998, 180, 163-170.	3.1	9