
Eric Gilleland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6251856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-stationary extreme value analysis in a changing climate. Climatic Change, 2014, 127, 353-369.	3.6	390
2	extRemes 2.0: An Extreme Value Analysis Package in <i>R</i> . Journal of Statistical Software, 2016, 72, .	3.7	366
3	Intercomparison of Spatial Forecast Verification Methods. Weather and Forecasting, 2009, 24, 1416-1430.	1.4	315
4	New Software to Analyze How Extremes Change Over Time. Eos, 2011, 92, 13-14.	0.1	179
5	Verifying Forecasts Spatially. Bulletin of the American Meteorological Society, 2010, 91, 1365-1376.	3.3	137
6	Modeling hydrologic and water quality extremes in a changing climate: A statistical approach based on extreme value theory. Water Resources Research, 2010, 46, .	4.2	105
7	Application of Spatial Verification Methods to Idealized and NWP-Gridded Precipitation Forecasts. Weather and Forecasting, 2009, 24, 1485-1497.	1.4	87
8	Impact of increasing heat waves on U.S. ozone episodes in the 2050s: Results from a multimodel analysis using extreme value theory. Geophysical Research Letters, 2016, 43, 4017-4025.	4.0	85
9	An extremeness threshold determines the regional response of floods to changes in rainfall extremes. Communications Earth & Environment, 2021, 2, .	6.8	67
10	A software review for extreme value analysis. Extremes, 2013, 16, 103-119.	1.0	55
11	Software for the analysis of extreme events: The current state and future directions. Extremes, 2005, 8, 87-109.	1.0	41
12	Spatial Dependence of Floods Shaped by Spatiotemporal Variations in Meteorological and Landâ€ 5 urface Processes. Geophysical Research Letters, 2020, 47, e2020GL088000.	4.0	40
13	Analyzing the Image Warp Forecast Verification Method on Precipitation Fields from the ICP. Weather and Forecasting, 2010, 25, 1249-1262.	1.4	39
14	Testing Competing Precipitation Forecasts Accurately and Efficiently: The Spatial Prediction Comparison Test. Monthly Weather Review, 2013, 141, 340-355.	1.4	31
15	The Setup of the MesoVICT Project. Bulletin of the American Meteorological Society, 2018, 99, 1887-1906.	3.3	31
16	Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe. Weather and Climate Extremes, 2015, 9, 17-24.	4.1	30
17	Increasing importance of temperature as a contributor to the spatial extent of streamflow drought. Environmental Research Letters, 2021, 16, 024038.	5.2	30
18	Generalized extreme wind speed distributions in South America over the Atlantic Ocean region. Theoretical and Applied Climatology, 2011, 104, 377-385.	2.8	28

Eric Gilleland

#	Article	IF	CITATIONS
19	Statistical models for monitoring and regulating ground-level ozone. Environmetrics, 2005, 16, 535-546.	1.4	27
20	Spatio-temporal models for large-scale indicators of extreme weather. Environmetrics, 2011, 22, 294-303.	1.4	22
21	Extreme wind regime responses to climate variability and change in the inner south coast of British Columbia, Canada. Atmosphere - Ocean, 2009, 47, 41-62.	1.6	21
22	An approach for probabilistic forecasting of seasonal turbidity threshold exceedance. Water Resources Research, 2010, 46, .	4.2	21
23	Use of Daily Station Observations to Produce High-Resolution Gridded Probabilistic Precipitation and Temperature Time Series for the Hawaiian Islands. Journal of Hydrometeorology, 2019, 20, 509-529.	1.9	21
24	The Model Evaluation Tools (MET): More than a Decade of Community-Supported Forecast Verification. Bulletin of the American Meteorological Society, 2021, 102, E782-E807.	3.3	21
25	Computationally Efficient Spatial Forecast Verification Using Baddeley's Delta Image Metric. Monthly Weather Review, 2008, 136, 1747-1757.	1.4	20
26	Spatial Forecast Verification: Baddeley's Delta Metric Applied to the ICP Test Cases. Weather and Forecasting, 2011, 26, 409-415.	1.4	20
27	How Probable Is Widespread Flooding in the United States?. Water Resources Research, 2020, 56, e2020WR028096.	4.2	19
28	Stochastic simulation of streamflow and spatial extremes: a continuous, wavelet-based approach. Hydrology and Earth System Sciences, 2020, 24, 3967-3982.	4.9	19
29	Spatial extreme value analysis to project extremes of largeâ€scale indicators for severe weather. Environmetrics, 2013, 24, 418-432.	1.4	17
30	A new approach to testing forecast predictive accuracy. Meteorological Applications, 2015, 22, 534-543.	2.1	17
31	A New Characterization within the Spatial Verification Framework for False Alarms, Misses, and Overall Patterns. Weather and Forecasting, 2017, 32, 187-198.	1.4	16
32	Bootstrap Methods for Statistical Inference. Part II: Extreme-Value Analysis. Journal of Atmospheric and Oceanic Technology, 2020, 37, 2135-2144.	1.3	15
33	Testing the Tests: What Are the Impacts of Incorrect Assumptions When Applying Confidence Intervals or Hypothesis Tests to Compare Competing Forecasts?. Monthly Weather Review, 2018, 146, 1685-1703.	1.4	14
34	Extreme-value analysis for the characterization of extremes in water resources: A generalized workflow and case study on New Mexico monsoon precipitation. Weather and Climate Extremes, 2020, 29, 100260.	4.1	14
35	Observed and predicted sensitivities of extreme surface ozone to meteorological drivers in three US cities. Atmospheric Environment, 2018, 176, 292-300.	4.1	13
36	Space–time dependence of compound hot–dry events in the United States: assessment using a multi-site multi-variable weather generator. Earth System Dynamics, 2021, 12, 621-634.	7.1	13

Eric Gilleland

#	Article	lF	CITATIONS
37	Empirical Bayes estimation for the conditional extreme value model. Stat, 2014, 3, 391-406.	0.4	11
38	Multiyear Droughts and Pluvials over the Upper Colorado River Basin and Associated Circulations. Journal of Hydrometeorology, 2017, 18, 799-818.	1.9	11
39	Bootstrap Methods for Statistical Inference. Part I: Comparative Forecast Verification for Continuous Variables. Journal of Atmospheric and Oceanic Technology, 2020, 37, 2117-2134.	1.3	10
40	A Novel Set of Geometric Verification Test Fields with Application to Distance Measures. Monthly Weather Review, 2020, 148, 1653-1673.	1.4	9
41	Review article: Observations for high-impact weather and their use in verification. Natural Hazards and Earth System Sciences, 2021, 21, 1297-1312.	3.6	9
42	Quantifying the Risk of Extreme Events under Climate Change. Chance, 2017, 30, 30-36.	0.2	8
43	Statistics of multiâ€year droughts from the method for objectâ€based diagnostic evaluation. International Journal of Climatology, 2018, 38, 3405-3420.	3.5	8
44	Evaluating the Impact of Planetary Boundary Layer, Land Surface Model, and Microphysics Parameterization Schemes on Cold Cloud Objects in Simulated GOESâ€16 Brightness Temperatures. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034709.	3.3	8
45	Assessing convection permitting resolutions of WRF for the purpose of water resource impact assessment and vulnerability work: A southeast Australian case study. Water Resources Research, 2017, 53, 726-743.	4.2	6
46	Complex High―and Lowâ€Flow Networks Differ in Their Spatial Correlation Characteristics, Drivers, and Changes. Water Resources Research, 2021, 57, e2021WR030049.	4.2	6
47	Evaluating NARCCAP model performance for frequencies of severe-storm environments. Advances in Statistical Climatology, Meteorology and Oceanography, 2016, 2, 137-153.	0.9	6
48	Novel measures for summarizing high-resolution forecast performance. Advances in Statistical Climatology, Meteorology and Oceanography, 2021, 7, 13-34.	0.9	5
49	Extremes of Severe Storm Environments under a Changing Climate. American Journal of Climate Change, 2013, 02, 47-61.	0.9	4
50	Assessing Evidence for Weather Regimes Governing Solar Power Generation in Kuwait. Energies, 2019, 12, 4409.	3.1	3
51	Extreme climatic characteristics near the coastline of the southeast region of Brazil in the last 40Âyears. Theoretical and Applied Climatology, 2021, 146, 657-674.	2.8	3
52	Verification of Meteorological Forecasts for Hydrological Applications. , 2019, , 923-951.		2
53	A statistical approach to fast nowcasting of lightning potential fields. Advances in Statistical Climatology, Meteorology and Oceanography, 2020, 6, 79-90.	0.9	2
54	Network design for verification of ceiling and visibility forecasts. Environmetrics, 2006, 17, 575-589.	1.4	1

#	Article	IF	CITATIONS
55	A methodological framework for extreme climate risk assessment integrating satellite and location based data sets in intelligent systems. International Journal of Intelligent Systems, 0, , .	5.7	1
56	Verification of Meteorological Forecasts for Hydrological Applications. , 2016, , 1-29.		1
57	Verification of Meteorological Forecasts for Hydrological Applications. , 2016, , 1-30.		0
58	The 2020 International Verification Methods Workshop Online: Major Outcomes and Way Forward. Bulletin of the American Meteorological Society, 2022, 103, E899-E910.	3.3	0