
David J Vinyard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6251785/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Chloride facilitatesÂMn(III) formation during photoassembly of the Photosystem II oxygen-evolving complex. Photosynthesis Research, 2022, 152, 283-288.	1.6	6
2	Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f. Journal of Biological Chemistry, 2022, 298, 101424.	1.6	32
3	The Nbp35/ApbC homolog acts as a nonessential [4Feâ€4S] transfer protein in methanogenic archaea. FEBS Letters, 2020, 594, 924-932.	1.3	4
4	Highly active cationic cobalt(II) hydroformylation catalysts. Science, 2020, 367, 542-548.	6.0	100
5	Thylakoid localized bestrophin-like proteins are essential for the CO ₂ concentrating mechanism of <i>Chlamydomonas reinhardtii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16915-16920.	3.3	83
6	Insights into Proton-Transfer Pathways during Water Oxidation in Photosystem II. Journal of Physical Chemistry B, 2019, 123, 8195-8202.	1.2	26
7	Photosystem II oxygen-evolving complex photoassembly displays an inverse H/D solvent isotope effect under chloride-limiting conditions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18917-18922.	3.3	41
8	Endothelial Cell Autonomous Role of Akt1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 870-879.	1.1	34
9	Iron and Cobalt Diazoalkane Complexes Supported by β-Diketiminate Ligands: A Synthetic, Spectroscopic, and Computational Investigation. Inorganic Chemistry, 2018, 57, 5959-5972.	1.9	15
10	Desiccation tolerant lichens facilitate in vivo H/D isotope effect measurements in oxygenic photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1039-1044.	0.5	3
11	Energetics of the S ₂ State Spin Isomers of the Oxygen-Evolving Complex of Photosystem II. Journal of Physical Chemistry B, 2017, 121, 1020-1025.	1.2	38
12	Progress Toward a Molecular Mechanism of Water Oxidation in Photosystem II. Annual Review of Physical Chemistry, 2017, 68, 101-116.	4.8	159
13	Slow Equilibration between Spectroscopically Distinct Trap States in Reduced TiO ₂ Nanoparticles. Journal of the American Chemical Society, 2017, 139, 2868-2871.	6.6	30
14	Mechanistic Study of an Improved Ni Precatalyst for Suzuki–Miyaura Reactions of Aryl Sulfamates: Understanding the Role of Ni(I) Species. Journal of the American Chemical Society, 2017, 139, 922-936.	6.6	130
15	A full set of iridium(<scp>iv</scp>) pyridine-alkoxide stereoisomers: highly geometry-dependent redox properties. Chemical Science, 2017, 8, 1642-1652.	3.7	32
16	Cp* versus Bis-carbonyl Iridium Precursors as CH Oxidation Precatalysts. Organometallics, 2017, 36, 199-206.	1.1	9
17	Ammonia Binding in the Second Coordination Sphere of the Oxygen-Evolving Complex of Photosystem II. Biochemistry, 2016, 55, 4432-4436.	1.2	14
18	A [3Fe-4S] cluster is required for tRNA thiolation in archaea and eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12703-12708.	3.3	63

DAVID J VINYARD

#	Article	IF	CITATIONS
19	Natural isoforms of the Photosystem II D1 subunit differ in photoassembly efficiency of the water-oxidizing complex. Photosynthesis Research, 2016, 128, 141-150.	1.6	4
20	S ₃ State of the O ₂ -Evolving Complex of Photosystem II: Insights from QM/MM, EXAFS, and Femtosecond X-ray Diffraction. Biochemistry, 2016, 55, 981-984.	1.2	62
21	Uncoupling Caveolae From Intracellular Signaling In Vivo. Circulation Research, 2016, 118, 48-55.	2.0	24
22	Comparison of dppf‣upported Nickel Precatalysts for the Suzuki–Miyaura Reaction: The Observation and Activity of Nickel(I). Angewandte Chemie - International Edition, 2015, 54, 13352-13356.	7.2	88
23	Photosynthetic water oxidation: binding and activation of substrate waters for O–O bond formation. Faraday Discussions, 2015, 185, 37-50.	1.6	66
24	Analysis of the Radiation-Damage-Free X-ray Structure of Photosystem II in Light of EXAFS and QM/MM Data. Biochemistry, 2015, 54, 1713-1716.	1.2	73
25	A Stable Coordination Complex of Rh(IV) in an N,O-Donor Environment. Journal of the American Chemical Society, 2015, 137, 15692-15695.	6.6	27
26	Oxygen-evolving complex of Photosystem II: an analysis of second-shell residues and hydrogen-bonding networks. Current Opinion in Chemical Biology, 2015, 25, 152-158.	2.8	102
27	Insights into Substrate Binding to the Oxygen-Evolving Complex of Photosystem II from Ammonia Inhibition Studies. Biochemistry, 2015, 54, 622-628.	1.2	23
28	Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga <i><scp>C</scp>hlamydomonas reinhardtii sta6</i> mutant. Plant Journal, 2015, 81, 947-960.	2.8	49
29	Experimental Support for a Single Electron-Transfer Oxidation Mechanism in Firefly Bioluminescence. Journal of the American Chemical Society, 2015, 137, 7592-7595.	6.6	85
30	Oxidized and reduced [2Fe–2S] clusters from an iron(I) synthon. Journal of Biological Inorganic Chemistry, 2015, 20, 875-883.	1.1	21
31	NH ₃ Binding to the S ₂ State of the O ₂ -Evolving Complex of Photosystem II: Analogue to H ₂ O Binding during the S ₂ → S ₃ Transition. Biochemistry, 2015, 54, 5783-5786.	1.2	68
32	Binding of dinitrogen to an iron–sulfur–carbon site. Nature, 2015, 526, 96-99.	13.7	223
33	Engineered Photosystem II Reaction Centers Optimize Photochemistry versus Photoprotection at Different Solar Intensities. Journal of the American Chemical Society, 2014, 136, 4048-4055.	6.6	36
34	A Multi-iron System Capable of Rapid N ₂ Formation and N ₂ Cleavage. Journal of the American Chemical Society, 2014, 136, 10226-10229.	6.6	82
35	Natural Variants of Photosystem II Subunit D1 Tune Photochemical Fitness to Solar Intensity *. Journal of Biological Chemistry, 2013, 288, 5451-5462.	1.6	35
36	Thermodynamically accurate modeling of the catalytic cycle of photosynthetic oxygen evolution: A mathematical solution to asymmetric Markov chains. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 861-868.	0.5	25

DAVID J VINYARD

#	Article	IF	CITATIONS
37	Photosystem II: The Reaction Center of Oxygenic Photosynthesis. Annual Review of Biochemistry, 2013, 82, 577-606.	5.0	330
38	Identification of an Oxygenic Reaction Center psbADC Operon in the Cyanobacterium Gloeobacter violaceus PCC 7421. Molecular Biology and Evolution, 2012, 29, 35-38.	3.5	7
39	Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17765-17769.	3.3	93
40	Increased Lipid Accumulation in the Chlamydomonas reinhardtii <i>sta7-10</i> Starchless Isoamylase Mutant and Increased Carbohydrate Synthesis in Complemented Strains. Eukaryotic Cell, 2010, 9, 1251-1261.	3.4	317
41	Electrogenerated Chemiluminescence of 9,10-Diphenylanthracene, Rubrene, and Anthracene in Fluorinated Aromatic Solvents. Journal of Physical Chemistry A, 2008, 112, 8529-8533.	1.1	25
42	Enhanced Electrogenerated Chemiluminescence in the Presence of Fluorinated Alcohols. Analytical Chemistry, 2007, 79, 6404-6409.	3.2	22
43	Photoluminescence and electrogenerated chemiluminescence of a bis(bipyridyl)ruthenium(II)–porphyrin complex. Inorganica Chimica Acta, 2007, 360, 1529-1534.	1.2	17
44	Electrogenerated chemiluminescence of the lithium salts of 8-hydroxyquinoline and 2-methyl-8-hydroxyquinoline. Dalton Transactions, 2006, , 4461.	1.6	3
45	Electrogenerated chemiluminescence of (bis-bipyridyl)ruthenium(II) acetylacetonate complexes. Inorganica Chimica Acta, 2006, 359, 4635-4638.	1.2	15