Sergey? Baskakov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6251603/publications.pdf

Version: 2024-02-01

686830 552369 39 711 13 26 citations g-index h-index papers 39 39 39 1058 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photoreduction of graphite oxide. High Energy Chemistry, 2011, 45, 57-61.	0.2	105
2	Graphene oxide films as separators of polyaniline-based supercapacitors. Journal of Power Sources, 2014, 245, 33-36.	4.0	83
3	Carbon nanomaterial produced by microwave exfoliation of graphite oxide: new insights. RSC Advances, 2014, 4, 587-592.	1.7	70
4	Gaseous products of thermo- and photo-reduction of graphite oxide. Chemical Physics Letters, 2010, 498, 287-291.	1.2	61
5	Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes. Journal of Power Sources, 2015, 279, 722-730.	4.0	59
6	Composite material for supercapacitors formed by polymerization of aniline in the presence of graphene oxide nanosheets. Journal of Power Sources, 2013, 224, 195-201.	4.0	43
7	Graphene oxide membranes for electrochemical energy storage and conversion. International Journal of Hydrogen Energy, 2018, 43, 2307-2326.	3.8	39
8	Preparation of graphene oxide-humic acid composite-based ink for printing thin film electrodes for micro-supercapacitors. Journal of Alloys and Compounds, 2018, 730, 88-95.	2.8	31
9	Photoreduction of graphite oxide nanosheets with vacuum ultraviolet radiation. High Energy Chemistry, 2012, 46, 117-121.	0.2	26
10	Novel Superhydrophobic Aerogel on the Base of Polytetrafluoroethylene. ACS Applied Materials & Interfaces, 2019, 11, 32517-32522.	4.0	26
11	Hybrid porous carbon materials derived from composite of humic acid and graphene oxide. Microporous and Mesoporous Materials, 2017, 245, 24-30.	2.2	25
12	Electrochemical performance of polyacrylonitrile-derived activated carbon prepared via IR pyrolysis. Electrochemistry Communications, 2018, 96, 98-102.	2.3	19
13	Hydrophilic and hydrophobic pores in reduced graphene oxide aerogel. Journal of Porous Materials, 2019, 26, 1111-1119.	1.3	16
14	Properties of a granulated nitrogen-doped graphene oxide aerogel. Journal of Non-Crystalline Solids, 2018, 498, 236-243.	1.5	13
15	Doping of fullerite with molecular oxygen at low temperature and pressure. Russian Chemical Bulletin, 2006, 55, 687-696.	0.4	9
16	A comparative study of graphene materials formed by thermal exfoliation of graphite oxide and chlorine trifluoride-intercalated graphite. High Energy Chemistry, 2013, 47, 331-338.	0.2	8
17	Novel facile routes for synthesis and isolation of fluorofullerenes C60F18 and C60F20 based on commercially available fluorinating reagents. Journal of Fluorine Chemistry, 2005, 126, 1559-1564.	0.9	7
18	In the Chase of Mixed Halofullerenes: Remarkable Transformation of C60Cl n (nÂ=Â6, 8, 12, 14) to C60Br24. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 12, 159-163.	1.0	7

#	Article	IF	Citations
19	Low-temperature radiation polymerization of tetrafluoroethylene in the presence of the carbon material obtained by explosive exfoliation of graphite oxide. High Energy Chemistry, 2013, 47, 73-75.	0.2	6
20	Fluorinated microwave exfoliated graphite oxide: structural features and double layer capacitance. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 266-272.	1.0	6
21	Comparative study of graphene aerogels synthesized using solâ "gel method by reducing graphene oxide suspension. High Energy Chemistry, 2017, 51, 269-276.	0.2	6
22	High-temperature carbonization of humic acids and a composite of humic acids with graphene oxide. High Energy Chemistry, 2016, 50, 43-50.	0.2	5
23	Changes in the composition and properties of graphene oxide films under monochromatic vacuum UV radiation. High Energy Chemistry, 2018, 52, 14-18.	0.2	5
24	Effect of ultrasound treatment of C60 solutions on the crystalline structure of precipitated fullerite. Russian Journal of Physical Chemistry A, 2006, 80, 654-658.	0.1	4
25	Synthesis and properties of C60 fullerite intercalated by acetylene. Chemical Physics Letters, 2009, 483, 115-119.	1.2	4
26	An NMR, DSC, and IR spectroscopy study of the composite formed during low-temperature postradiation polymerization of C2F4 in the presence of a 3D graphene material. High Energy Chemistry, 2013, 47, 291-294.	0.2	4
27	Composite materials based on reduced graphene oxide and polyaniline. Composition, morphology, electrochemical properties. Russian Journal of Electrochemistry, 2015, 51, 916-924.	0.3	3
28	Controlled electrosynthesis of polyaniline on branched surface of reduced graphene oxide. Russian Journal of Electrochemistry, 2015, 51, 976-985.	0.3	3
29	Effect of Low-Temperature Heating on the Properties of Graphene Oxide Aerogel. High Energy Chemistry, 2018, 52, 355-359.	0.2	3
30	Superhydrophobic Aerogel of Polytetrafluoroethylene/Graphene Oxide Composite. High Energy Chemistry, 2019, 53, 407-412.	0.2	3
31	Oxidative Destruction of Chitosan and Its Stability. Polymer Science - Series B, 2019, 61, 189-199.	0.3	3
32	Dimerization of Defect Fullerenes and the Orientational Phase Transition in Oxidized C ₆₀ Fullerite. Journal of Nanoscience and Nanotechnology, 2011, 11, 1887-1896.	0.9	2
33	On the state of CH4 molecule in the octahedral void of C60 fullerite. Russian Chemical Bulletin, 2011, 60, 1112-1117.	0.4	2
34	Electrosynthesis of a composite based on graphene oxide nanosheets and polyaniline with hexachloroiridate anion. Russian Chemical Bulletin, 2014, 63, 627-634.	0.4	2
35	New data on the composition of products of ultrasonic irradiation of graphite in N-methylpyrrolidone. High Energy Chemistry, 2017, 51, 145-147.	0.2	2
36	Conversion of isopropyl alcohol to acetone in fullerite cavities. Russian Chemical Bulletin, 2009, 58, 758-764.	0.4	1

#	Article	IF	CITATIONS
37	Calorimetric study of the low-temperature postradiation polymerization of tetrafluoroethylene in the presence of reduced graphite oxide. High Energy Chemistry, 2014, 48, 11-16.	0.2	O
38	2D-printing ink based on ultrasound exfoliated graphite. Technical Physics Letters, 2017, 43, 274-278.	0.2	0
39	NMR Study of the graphite–N,N-dimethylformamide system after ultrasonication. High Energy Chemistry, 2018, 52, 77-80.	0.2	O