

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6251602/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science, 2014, 343, 1339-1343.	6.0	2,376
2	Hydrogen-Treated TiO ₂ Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Letters, 2011, 11, 3026-3033.	4.5	2,344
3	Nanowire electronic and optoelectronic devices. Materials Today, 2006, 9, 18-27.	8.3	1,253
4	Hydrogenated TiO ₂ Nanotube Arrays for Supercapacitors. Nano Letters, 2012, 12, 1690-1696.	4.5	1,226
5	Flexible solid-state supercapacitors: design, fabrication and applications. Energy and Environmental Science, 2014, 7, 2160.	15.6	1,156
6	Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Letters, 2009, 9, 2331-2336.	4.5	1,071
7	Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting. Nano Letters, 2011, 11, 2119-2125.	4.5	994
8	Hâ€TiO ₂ @MnO ₂ //Hâ€TiO ₂ @C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors. Advanced Materials, 2013, 25, 267-272.	11.1	894
9	Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes. Nano Letters, 2005, 5, 2287-2291.	4.5	856
10	Au Nanostructure-Decorated TiO ₂ Nanowires Exhibiting Photoactivity Across Entire UV-visible Region for Photoelectrochemical Water Splitting. Nano Letters, 2013, 13, 3817-3823.	4.5	812
11	High Energy Density Asymmetric Quasi-Solid-State Supercapacitor Based on Porous Vanadium Nitride Nanowire Anode. Nano Letters, 2013, 13, 2628-2633.	4.5	691
12	Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters, 2014, 14, 2522-2527.	4.5	688
13	Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Materials, 2008, 7, 701-706.	13.3	679
14	Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy and Environmental Science, 2012, 5, 6180.	15.6	666
15	Solidâ€State Supercapacitor Based on Activated Carbon Cloths Exhibits Excellent Rate Capability. Advanced Materials, 2014, 26, 2676-2682.	11.1	660
16	Stabilized TiN Nanowire Arrays for High-Performance and Flexible Supercapacitors. Nano Letters, 2012, 12, 5376-5381.	4.5	627
17	Facile Synthesis of Highly Photoactive α-Fe ₂ O ₃ -Based Films for Water Oxidation. Nano Letters, 2011, 11, 3503-3509.	4.5	623
18	Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics. Nano Letters, 2004, 4, 1975-1979.	4.5	609

٧v

#	Article	IF	CITATIONS
19	Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores. Nano Letters, 2016, 16, 3448-3456.	4.5	608
20	Double-Sided CdS and CdSe Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation. Nano Letters, 2010, 10, 1088-1092.	4.5	587
21	Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy and Environmental Science, 2012, 5, 6682.	15.6	492
22	Synergistic Effect of CdSe Quantum Dot Sensitization and Nitrogen Doping of TiO ₂ Nanostructures for Photoelectrochemical Solar Hydrogen Generation. Nano Letters, 2010, 10, 478-483.	4.5	474
23	Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. Journal of Materials Chemistry A, 2017, 5, 17705-17733.	5.2	464
24	Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting. Advanced Energy Materials, 2017, 7, 1700555.	10.2	455
25	GaN nanowire lasers with low lasing thresholds. Applied Physics Letters, 2005, 87, 173111.	1.5	439
26	InAs/InP Radial Nanowire Heterostructures as High Electron Mobility Devices. Nano Letters, 2007, 7, 3214-3218.	4.5	366
27	Paperâ€Based Electrodes for Flexible Energy Storage Devices. Advanced Science, 2017, 4, 1700107.	5.6	361
28	Efficient 3D Printed Pseudocapacitive Electrodes with Ultrahigh MnO2 Loading. Joule, 2019, 3, 459-470.	11.7	352
29	The Influence of Oxygen Content on the Thermal Activation of Hematite Nanowires. Angewandte Chemie - International Edition, 2012, 51, 4074-4079.	7.2	349
30	Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale, 2012, 4, 6682.	2.8	345
31	Dopant-Free GaN/AlN/AlGaN Radial Nanowire Heterostructures as High Electron Mobility Transistors. Nano Letters, 2006, 6, 1468-1473.	4.5	344
32	Microbial reduction of graphene oxide by Shewanella. Nano Research, 2011, 4, 563-570.	5.8	327
33	Pore and Heteroatom Engineered Carbon Foams for Supercapacitors. Advanced Energy Materials, 2019, 9, 1803665.	10.2	321
34	LiCl/PVA Gel Electrolyte Stabilizes Vanadium Oxide Nanowire Electrodes for Pseudocapacitors. ACS Nano, 2012, 6, 10296-10302.	7.3	310
35	A New Benchmark Capacitance for Supercapacitor Anodes by Mixedâ€Valence Sulfurâ€Doped V ₆ O _{13â^'<i>x</i>} . Advanced Materials, 2014, 26, 5869-5875.	11.1	305
36	3D printed functional nanomaterials for electrochemical energy storage. Nano Today, 2017, 15, 107-120.	6.2	302

#	Article	IF	CITATIONS
37	Organolead Halide Perovskite Nanocrystals: Branched Capping Ligands Control Crystal Size and Stability. Angewandte Chemie - International Edition, 2016, 55, 8864-8868.	7.2	282
38	A room temperature low-threshold ultraviolet plasmonic nanolaser. Nature Communications, 2014, 5, 4953.	5.8	278
39	Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser and Photonics Reviews, 2010, 4, 517-528.	4.4	266
40	Oxygen defective metal oxides for energy conversion and storage. Nano Today, 2017, 13, 23-39.	6.2	266
41	High power density microbial fuel cell with flexible 3D graphene–nickel foam as anode. Nanoscale, 2013, 5, 10283.	2.8	265
42	Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays. Chemical Communications, 2012, 48, 7717-7719.	2.2	253
43	High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale, 2013, 5, 7984.	2.8	253
44	Multiscale Pore Network Boosts Capacitance of Carbon Electrodes for Ultrafast Charging. Nano Letters, 2017, 17, 3097-3104.	4.5	251
45	Ni Foam-Supported Fe-Doped β-Ni(OH) ₂ Nanosheets Show Ultralow Overpotential for Oxygen Evolution Reaction. ACS Energy Letters, 2019, 4, 622-628.	8.8	240
46	Pushing the Cycling Stability Limit of Polypyrrole for Supercapacitors. Advanced Functional Materials, 2015, 25, 4626-4632.	7.8	234
47	Semiconductor nanowire laser and nanowire waveguide electro-optic modulators. Applied Physics Letters, 2005, 87, 151103.	1.5	232
48	Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors. Nanoscale, 2012, 4, 3123.	2.8	228
49	Theoretical and Experimental Insight into the Effect of Nitrogen Doping on Hydrogen Evolution Activity of Ni ₃ S ₂ in Alkaline Medium. Advanced Energy Materials, 2018, 8, 1703538.	10.2	225
50	Computational and Photoelectrochemical Study of Hydrogenated Bismuth Vanadate. Journal of Physical Chemistry C, 2013, 117, 10957-10964.	1.5	222
51	Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO ₂ Nanowires for Photoelectrochemical Water Splitting. Journal of Physical Chemistry C, 2013, 117, 25837-25844.	1.5	222
52	Improving the Cycling Stability of Metal–Nitride Supercapacitor Electrodes with a Thin Carbon Shell. Advanced Energy Materials, 2014, 4, 1300994.	10.2	217
53	Morphology and Doping Engineering of Sn-Doped Hematite Nanowire Photoanodes. Nano Letters, 2017, 17, 2490-2495.	4.5	204
54	Solar-Driven Microbial Photoelectrochemical Cells with a Nanowire Photocathode. Nano Letters, 2010, 10, 4686-4691.	4.5	197

#	Article	IF	CITATIONS
55	Flexible Transparent Molybdenum Trioxide Nanopaper for Energy Storage. Advanced Materials, 2016, 28, 6353-6358.	11.1	194
56	Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. Journal of Power Sources, 2010, 195, 3742-3747.	4.0	192
57	3Dâ€Printed Structure Boosts the Kinetics and Intrinsic Capacitance of Pseudocapacitive Graphene Aerogels. Advanced Materials, 2020, 32, e1906652.	11.1	191
58	Carbon doping switching on the hydrogen adsorption activity of NiO for hydrogen evolution reaction. Nature Communications, 2020, 11, 590.	5.8	170
59	A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale, 2013, 5, 4129.	2.8	169
60	Electrodeposition of vanadium oxide–polyaniline composite nanowire electrodes for high energy density supercapacitors. Journal of Materials Chemistry A, 2014, 2, 10882-10888.	5.2	165
61	Solar driven hydrogen releasing from urea and human urine. Energy and Environmental Science, 2012, 5, 8215.	15.6	160
62	Chemically modified nanostructures for photoelectrochemical water splitting. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 19, 35-51.	5.6	156
63	Highly Sensitive Detection of Proteins and Bacteria in Aqueous Solution Using Surface-Enhanced Raman Scattering and Optical Fibers. Analytical Chemistry, 2011, 83, 5888-5894.	3.2	155
64	Shape-Controlled Synthesis of Single-Crystalline Fe ₂ O ₃ Hollow Nanocrystals and Their Tunable Optical Properties. Journal of Physical Chemistry C, 2009, 113, 9928-9935.	1.5	146
65	Ostwald Ripening Improves Rate Capability of High Mass Loading Manganese Oxide for Supercapacitors. ACS Energy Letters, 2017, 2, 1752-1759.	8.8	146
66	Perspective on High-Rate Alkaline Water Splitting. , 2021, 3, 224-234.		136
67	Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors. Journal of Materials Chemistry A, 2017, 5, 17151-17173.	5.2	135
68	Addressing the Achilles' heel of pseudocapacitive materials: Longâ€ŧerm stability. InformaÄnÃ-Materiály, 2020, 2, 807-842.	8.5	135
69	Acid Treatment Enables Suppression of Electron–Hole Recombination in Hematite for Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2016, 55, 3403-3407.	7.2	132
70	Photoenhanced Electrochemical Interaction between <i>Shewanella</i> and a Hematite Nanowire Photoanode. Nano Letters, 2014, 14, 3688-3693.	4.5	121
71	Hierarchically porous carbon foams for electric double layer capacitors. Nano Research, 2016, 9, 2875-2888.	5.8	120
72	Amorphous Mixedâ€Valence Vanadium Oxide/Exfoliated Carbon Cloth Structure Shows a Record High Cycling Stability. Small, 2017, 13, 1700067.	5.2	119

#	Article	IF	CITATIONS
73	Recent Advances of Aqueous Rechargeable Zincâ€lodine Batteries: Challenges, Solutions, and Prospects. Advanced Materials, 2022, 34, e2108856.	11.1	119
74	An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg. Nano Letters, 2015, 15, 3189-3194.	4.5	118
75	An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2016, 4, 2849-2855.	5.2	114
76	Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale, 2012, 4, 1463.	2.8	110
77	Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. Nanoscale, 2017, 9, 13119-13127.	2.8	108
78	Role of Hydrogen in Defining the n-Type Character of BiVO ₄ Photoanodes. Chemistry of Materials, 2016, 28, 5761-5771.	3.2	104
79	Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes. Journal of Power Sources, 2011, 196, 5209-5214.	4.0	102
80	Review of Snâ€Doped Hematite Nanostructures for Photoelectrochemical Water Splitting. Particle and Particle Systems Characterization, 2014, 31, 1113-1121.	1.2	99
81	Printing Porous Carbon Aerogels for Low Temperature Supercapacitors. Nano Letters, 2021, 21, 3731-3737.	4.5	98
82	Engineering of Mesoscale Pores in Balancing Mass Loading and Rate Capability of Hematite Films for Electrochemical Capacitors. Advanced Energy Materials, 2018, 8, 1801784.	10.2	97
83	Periodic Porous 3D Electrodes Mitigate Gas Bubble Traffic during Alkaline Water Electrolysis at High Current Densities. Advanced Energy Materials, 2020, 10, 2002955.	10.2	97
84	Synthesis, Optical Properties, and Exciton Dynamics of Organolead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2015, 119, 26672-26682.	1.5	96
85	A microfluidic microbial fuel cell fabricated by soft lithography. Bioresource Technology, 2011, 102, 5836-5840.	4.8	93
86	Oxygen deficient α-Fe ₂ O ₃ photoelectrodes: a balance between enhanced electrical properties and trap-mediated losses. Chemical Science, 2015, 6, 4009-4016.	3.7	92
87	Direct Correlation between Structural and Optical Properties of Illâ ^{~?} V Nitride Nanowire Heterostructures with Nanoscale Resolution. Nano Letters, 2009, 9, 3940-3944.	4.5	91
88	Controlled partial-exfoliation of graphite foil and integration with MnO2nanosheets for electrochemical capacitors. Nanoscale, 2015, 7, 3581-3587.	2.8	91
89	Boosting Power Density of Microbial Fuel Cells with 3D Nitrogenâ€Doped Graphene Aerogel Electrode. Advanced Science, 2016, 3, 1600097.	5.6	91
90	CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Research, 2011, 4, 249-258.	5.8	87

#	Article	IF	CITATIONS
91	Self-Biased Solar-Microbial Device for Sustainable Hydrogen Generation. ACS Nano, 2013, 7, 8728-8735.	7.3	84
92	Investigation of hematite nanorod–nanoflake morphological transformation and the application of ultrathin nanoflakes for electrochemical devices. Nano Energy, 2015, 12, 169-177.	8.2	83
93	Optical Properties and Exciton Dynamics of Alloyed Core/Shell/Shell Cd _{1–<i>x</i>} Zn _{<i>x</i>} Se/ZnSe/ZnS Quantum Dots. ACS Applied Materials & Interfaces, 2013, 5, 2893-2900.	4.0	82
94	Zipping Up NiFe(OH) _{<i>x</i>} -Encapsulated Hematite To Achieve an Ultralow Turn-On Potential for Water Oxidation. ACS Energy Letters, 2019, 4, 1983-1990.	8.8	82
95	Deciphering the Electron Transport Pathway for Graphene Oxide Reduction by Shewanella oneidensis MR-1. Journal of Bacteriology, 2011, 193, 3662-3665.	1.0	81
96	Surface Passivation of TiO ₂ Nanowires Using a Facile Precursor-Treatment Approach for Photoelectrochemical Water Oxidation. Journal of Physical Chemistry C, 2014, 118, 15086-15094.	1.5	80
97	SERS spectroscopy and SERS imaging of Shewanella oneidensis using silver nanoparticles and nanowires. Chemical Communications, 2011, 47, 4129.	2.2	79
98	Direct ink writing of organic and carbon aerogels. Materials Horizons, 2018, 5, 1166-1175.	6.4	78
99	Surface Engineering of Nanomaterials for Photoâ€Electrochemical Water Splitting. Small, 2019, 15, e1803746.	5.2	72
100	Effects of Hydrogen Treatment and Air Annealing on Ultrafast Charge Carrier Dynamics in ZnO Nanowires Under in Situ Photoelectrochemical Conditions. Journal of Physical Chemistry C, 2012, 116, 17360-17368.	1.5	68
101	A three-dimensional nitrogen-doped graphene aerogel-activated carbon composite catalyst that enables low-cost microfluidic microbial fuel cells with superior performance. Journal of Materials Chemistry A, 2016, 4, 15913-15919.	5.2	68
102	Lowâ€Temperature Activation of Hematite Nanowires for Photoelectrochemical Water Oxidation. ChemSusChem, 2014, 7, 848-853.	3.6	67
103	Three-dimensional carbon architectures for electrochemical capacitors. Journal of Colloid and Interface Science, 2018, 509, 529-545.	5.0	67
104	Cu ₂ O/CuS Nanocomposites Show Excellent Selectivity and Stability for Formate Generation via Electrochemical Reduction of Carbon Dioxide. , 2021, 3, 100-109.		65
105	Prototypical Study of Double-Layered Cathodes for Aqueous Rechargeable Static Zn–I ₂ Batteries. Nano Letters, 2021, 21, 4129-4135.	4.5	62
106	Direct molecule-specific glucose detection by Raman spectroscopy based on photonic crystal fiber. Analytical and Bioanalytical Chemistry, 2012, 402, 687-691.	1.9	61
107	Photohole Induced Corrosion of Titanium Dioxide: Mechanism and Solutions. Nano Letters, 2015, 15, 7051-7057.	4.5	57
108	12 GHz \$F_{m MAX}\$GaN/AlN/AlGaN Nanowire MISFET. IEEE Electron Device Letters, 2009, 30, 322-324.	2.2	55

#	Article	IF	CITATIONS
109	Probing the Nature of Bandgap States in Hydrogen-Treated TiO ₂ Nanowires. Journal of Physical Chemistry C, 2013, 117, 26821-26830.	1.5	54
110	Solar-assisted microbial fuel cells for bioelectricity and chemical fuel generation. Nano Energy, 2014, 8, 264-273.	8.2	53
111	Controlled Synthesis of AlN/GaN Multiple Quantum Well Nanowire Structures and Their Optical Properties. Nano Letters, 2012, 12, 3344-3350.	4.5	51
112	4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Materials, 2018, 12, 191-196.	9.5	51
113	Metal organic frameworks with immobilized nanoparticles: Synthesis and applications in photocatalytic hydrogen generation and energy storage. Materials Research Bulletin, 2017, 96, 385-394.	2.7	50
114	3D printing of living bacteria electrode. Nano Research, 2020, 13, 1318-1323.	5.8	50
115	Oxygen vacancies enable the visible light photoactivity of chromium-implanted TiO2 nanowires. Journal of Energy Chemistry, 2021, 55, 154-161.	7.1	50
116	Recovery of Rare Earth Elements from Geothermal Fluids through Bacterial Cell Surface Adsorption. Environmental Science & Technology, 2019, 53, 7714-7723.	4.6	46
117	Ultrasmall Single-Crystal Indium Antimonide Nanowires. Crystal Growth and Design, 2010, 10, 2479-2482.	1.4	45
118	TiN Paper for Ultrafast-Charging Supercapacitors. Nano-Micro Letters, 2020, 12, 3.	14.4	44
119	Fabrication of hydroxyl group modified monodispersed hybrid silica particles and the h-SiO2/TiO2 core/shell microspheres as high performance photocatalyst for dye degradation. Journal of Colloid and Interface Science, 2011, 354, 196-201.	5.0	43
120	Tri-layered graphite foil for electrochemical capacitors. Journal of Materials Chemistry A, 2016, 4, 7683-7688.	5.2	43
121	Ion Intercalation Induced Capacitance Improvement for Grapheneâ€Based Supercapacitor Electrodes. ChemNanoMat, 2016, 2, 635-641.	1.5	41
122	Vertical Silicon Nanowire Platform for Low Power Electronics and Clean Energy Applications. Journal of Nanotechnology, 2012, 2012, 1-21.	1.5	35
123	Plasmonic solar desalination. Nature Photonics, 2016, 10, 361-362.	15.6	35
124	Recent progress and strategies for enhancing photocatalytic water splitting. Materials Today Sustainability, 2020, 9, 100032.	1.9	35
125	The coupling of experiments with density functional theory in the studies of the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 8783-8812.	5.2	33
126	Spectroelectrochemical Photoluminescence of Trap States in H-Treated Rutile TiO ₂ Nanowires: Implications for Photooxidation of Water. Journal of Physical Chemistry C, 2016, 120, 3530-3541.	1.5	32

#	Article	IF	CITATIONS
127	Microstadium single-nanowire laser. Applied Physics Letters, 2007, 91, 251115.	1.5	30
128	Evidence of oxygen vacancy and possible intermediate gap state in layered α-MoO3 single-crystal nanobelts. Physica B: Condensed Matter, 2016, 481, 192-196.	1.3	30
129	Recent progress in electrochemical reduction of CO2 by oxide-derived copper catalysts. Materials Today Nano, 2020, 12, 100096.	2.3	30
130	Acid Treatment Enables Suppression of Electron–Hole Recombination in Hematite for Photoelectrochemical Water Splitting. Angewandte Chemie, 2016, 128, 3464-3468.	1.6	27
131	Interpenetrated Bacteria arbon Nanotubes Film for Microbial Fuel Cells. Small Methods, 2018, 2, 1800152.	4.6	27
132	Surface hydroxylated hematite promotes photoinduced hole transfer for water oxidation. Journal of Materials Chemistry A, 2019, 7, 8050-8054.	5.2	27
133	Doping Bottleneck in Hematite: Multipole Clustering by Small Polarons. Chemistry of Materials, 2021, 33, 4390-4398.	3.2	22
134	Synthesis, Structural Characterization, Solvatochromism, and Electrochemistry of Tetra-Osmium Carbonyl Clusters Containing Azo-Ligands. European Journal of Inorganic Chemistry, 2001, 2001, 3163-3173.	1.0	21
135	Growth of gallium nitride and indium nitride nanowires on conductive and flexible carbon cloth substrates. Nanoscale, 2013, 5, 1820.	2.8	21
136	Chemically modified titanium oxide nanostructures for dye-sensitized solar cells. Nano Energy, 2013, 2, 1373-1382.	8.2	21
137	The Effect of the Hydrogenation Temperature on TiO2Nanostructures for Photoelectrochemical Water Oxidation. European Journal of Inorganic Chemistry, 2014, 2014, 760-766.	1.0	21
138	Tuning the Electrochemical Properties of Nitrogen-Doped Carbon Aerogels in a Blend of Ammonia and Nitrogen Gases. ACS Applied Energy Materials, 2018, 1, 5043-5053.	2.5	21
139	Title is missing!. Journal of Cluster Science, 2002, 13, 223-233.	1.7	20
140	Synthesis and crystal structures of copper(I) iodide complexes chelating with bis(ethylamidophosphine). Inorganic Chemistry Communication, 2003, 6, 1451-1453.	1.8	18
141	Nitrogen-doped carbon "spider webs―derived from pyrolysis of polyaniline nanofibers in ammonia for capacitive energy storage. Journal of Materials Research, 2018, 33, 1109-1119.	1.2	16
142	Electrochemical Reduction of CO ₂ to Alcohols: Current Understanding, Progress, and Challenges. Advanced Energy and Sustainability Research, 2022, 3, 2100131.	2.8	16
143	Syntheses, Reactivity Studies and the Catalytic Properties of a Series of Tetraosmiumâ^'Gold Mixed-Metal Clusters. European Journal of Inorganic Chemistry, 2003, 2003, 2651-2662.	1.0	15
144	The role of graphene as an overlayer on nanostructured hematite photoanodes for improved solar water oxidation. Materials Today Energy, 2018, 8, 8-14.	2.5	15

#	Article	IF	CITATIONS
145	Stable Ta ₂ O ₅ Overlayers on Hematite for Enhanced Photoelectrochemical Water Splitting Efficiencies. ChemPhotoChem, 2018, 2, 183-189.	1.5	15
146	A natural source of nanowires. Nature Nanotechnology, 2011, 6, 538-539.	15.6	14
147	Dependence of Interfacial Charge Transfer on Bifunctional Aromatic Molecular Linkers in CdSe Quantum Dot Sensitized TiO2 Photoelectrodes. ACS Applied Energy Materials, 2018, 1, 2907-2917.	2.5	14
148	The First Example of Tetraosmium Carbonyl Clusters Containing (μ3-NH) Nitrene Ligands: Syntheses and Crystal Structures. Organometallics, 2003, 22, 1029-1037.	1.1	13
149	Tetraosmium carbonyl clusters containing µ-NH2 amido ligands: syntheses, crystal structures and reactivities. Dalton Transactions, 2003, , 398-405.	1.6	12
150	Title is missing!. Journal of Cluster Science, 2001, 12, 595-617.	1.7	11
151	Nickel Catalyst Boosts Solar Hydrogen Generation of CdSe Nanocrystals. ChemCatChem, 2013, 5, 1294-1295.	1.8	9
152	Ethanol Oxidation Reaction Catalyzed by Palladium Nanoparticles Supported on Hydrogenâ€Treated TiO 2 Nanobelts: Impact of Oxygen Vacancies. ChemElectroChem, 2017, 4, 2211-2217.	1.7	9
153	Synthesis and characterisation of tetraosmium carbonyl clusters bearing an azo type ligand: crystal and molecular structures of [Os4(μ-H)4(CO)11(NC5H4Nĩ`NPh)] and [Os4(μ-H)4(CO)10(MeCN)(NC5H4Nĩ` Inorganic Chemistry Communication, 1999, 2, 599-603.	.NuP.fa)].	8
154	Reduced graphene oxide modified activated carbon for improving power generation of air-cathode microbial fuel cells. Journal of Materials Research, 2018, 33, 1279-1287.	1.2	8
155	Ultrasmall Single-Crystal Indium Antimonide Nanowires. Crystal Growth and Design, 2010, 10, 4669-4669.	1.4	5
156	Ultrafast Charge Carrier Dynamics and Photoelectrochemical Properties of Hydrogen-treated TiO2 Nanowire Arrays. Materials Research Society Symposia Proceedings, 2012, 1387, 1.	0.1	5
157	Synthesis and characterization of silver(I) complexes [AgL]2[BF4]2 and [Ag(OAc)L]â^ž [L=(CH2NHCOC2H4PPh2)2]. Inorganic Chemistry Communication, 2003, 6, 1315-1318.	1.8	4
158	Low-Cost Nanomaterials for Photoelectrochemical Water Splitting. Green Energy and Technology, 2014, , 267-295.	0.4	4
159	The critical role of synthesis conditions on small polaron carrier concentrations in hematite—A first-principles study. Journal of Applied Physics, 2021, 130, .	1.1	4
160	Oxygen Deficient TiO ₂ Photoanode for Photoelectrochemical Water Oxidation. Solid State Phenomena, 0, 253, 11-40.	0.3	3
161	Insights on Thickness-Dependent Charge Transfer Efficiency Modulated by Ultrasonic Treatment in Hematite Photoanodes. Journal of Physical Chemistry C, 2021, 125, 9981-9989.	1.5	3
162	Insights into the pH-dependent Behavior of N-Doped Carbons for the Oxygen Reduction Reaction by First-Principles Calculations. Journal of Physical Chemistry C, 2021, 125, 26429-26436.	1.5	3

#	Article	IF	CITATIONS
163	Ultrafast charge carrier dynamics and photoelectrochemical properties of ZnO nanowires decorated with Au nanoparticles. , 2011, , .		1
164	Photonics crystal fiber Raman sensors. , 2012, , .		1
165	Electronic surface reconstruction of TiO2 nanocrystals revealed by resonant inelastic x-ray scattering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	1
166	Large-Scale 2D-Confined Self-Assembly of Colloidal Nanoparticles via Dynamic Ice Crystal Templates. ACS Central Science, 0, , .	5.3	1
167	One-Dimensional Metal Oxide Nanostructures for Photoelectrochemical Hydrogen Generation. , 2011, , 133-166.		0
168	Semiconductor Nanowires and Nanowire Heterostructures for Supercapacitors. , 2013, , .		0
169	Design of Novel Metal Nanostructures for Broadband Solar Energy Conversion. International Journal of Spectroscopy, 2015, 2015, 1-10.	1.4	0
170	Hydrogen-Treated TiO ₂ Nanowires for Charge Storage and Photoelectrochemical Water Splitting. , 2017, , 189-213.		0
171	SURFACE ENGINEERING OF SEMICONDUCTORS FOR PHOTOELECTROCHEMICAL WATER SPLITTING. , 2018, , 223-249.		0
172	A top-down cutting method for construction of high-performance fiber-shaped quasi-solid-state asymmetric supercapacitors. Materials Today Energy, 2021, 21, 100758.	2.5	0
173	Label-Free SERS Detection of Proteins and Bacteria Using Optical Fibers for Sensitivity Improvement. , 2011, , .		0
174	Acid treatment improves the performance of hematite photoanodes. SPIE Newsroom, 0, , .	0.1	0