
Valerie Lullien-Pellerin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6251299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Do ancient wheats contain less gluten than modern bread wheat, in favour of better health?. Nutrition Bulletin, 2022, 47, 157-167.	0.8	3
2	A new green insecticide for stored wheat grains: Efficiency against Rhyzopertha dominica and risk assessment. Journal of Cereal Science, 2021, 101, 103312.	1.8	4
3	Study of the microstructure of durum wheat endosperm using X-ray micro-computed tomography. Journal of Cereal Science, 2020, 96, 103115.	1.8	6
4	Stress transmission in cemented bidisperse granular materials. Physical Review E, 2020, 101, 052901.	0.8	6
5	Both genetic and environmental conditions affect wheat grain texture: Consequences for grain fractionation and flour properties. Journal of Cereal Science, 2020, 92, 102917.	1.8	3
6	Understanding the Mechanics of Wheat Grain Fractionation and the Impact of Puroindolines on Milling and Product Quality. , 2020, , 369-385.		4
7	The Impact of Processing on Potentially Beneficial Wheat Grain Components for Human Health. , 2020, , 387-420.		4
8	Fusarium Species Infection in Wheat: Impact on Quality and Mycotoxin Accumulation. , 2020, , 421-452.		2
9	Pasta color and viscoelasticity: Revisiting the role of particle size, ash, and protein content. Cereal Chemistry, 2018, 95, 386-398.	1.1	17
10	DRY biorefineries: Multiscale modeling studies and innovative processing. Innovative Food Science and Emerging Technologies, 2018, 46, 131-139.	2.7	21
11	Evidence of a Synergistic Effect between Pea Seed and Wheat Grain Endogenous Phytase Activities. Journal of Agricultural and Food Chemistry, 2018, 66, 12034-12041.	2.4	10
12	On the effect of local sample slope during modulus measurements by contact-resonance atomic force microscopy. Ultramicroscopy, 2018, 194, 78-88.	0.8	10
13	A wheat grain quantitative evaluation of vitreousness by light transmission analysis. Journal of Cereal Science, 2018, 83, 58-62.	1.8	8
14	Assessment of biochemical markers identified in wheat for monitoring barley grain tissue. Journal of Cereal Science, 2017, 74, 11-18.	1.8	10
15	Bread wheat milling behavior: effects of genetic and environmental factors, and modeling using grain mechanical resistance traits. Theoretical and Applied Genetics, 2017, 130, 929-950.	1.8	6
16	Numerical modeling of the tensile strength of a biological granular aggregate: Effect of the particle size distribution. EPJ Web of Conferences, 2017, 140, 08013.	0.1	1
17	A compositional breakage equation for wheat milling. Journal of Food Engineering, 2016, 182, 46-64.	2.7	9
18	Puroindoline genes introduced into durum wheat reduce milling energy and change milling behavior similar to soft common wheats. Journal of Cereal Science, 2016, 71, 183-189.	1.8	36

#	Article	IF	CITATIONS
19	Bottom-up model for understanding the effects of wheat endosperm microstructure on its mechanical strength. Journal of Food Engineering, 2016, 190, 40-47.	2.7	10
20	In-Depth Study of Durum Wheat Grain Tissue Distribution at Milling. Cereal Chemistry, 2016, 93, 219-225.	1.1	5
21	Relationships between wheat grain physical characteristics studied through near-isogenic lines with distinct puroindoline-b allele. Theoretical and Applied Genetics, 2015, 128, 913-929.	1.8	26
22	Changes in the starch-protein interface depending on common wheat grain hardness revealed using atomic force microscopy. Plant Science, 2015, 239, 1-8.	1.7	22
23	Localization of phytase transcripts in germinating seeds of the common bean (Phaseolus vulgaris L.). Planta, 2014, 240, 471-478.	1.6	12
24	Exposure or release of ferulic acid from wheat aleurone: Impact on its antioxidant capacity. Food Chemistry, 2013, 141, 2355-2362.	4.2	48
25	Nano-mechanical properties of starch and gluten biopolymers from atomic force microscopy. European Polymer Journal, 2013, 49, 3788-3795.	2.6	30
26	A Study of Puroindoline b Gene Involvement in the Milling Behavior of Hardâ€īype Common Wheats. Cereal Chemistry, 2012, 89, 44-51.	1.1	8
27	Water diffusion and enzyme activities during malting of barley grains: A relationship assessment. Journal of Food Engineering, 2012, 109, 358-365.	2.7	35
28	Wheat grain tissue proportions in milling fractions using biochemical marker measurements: Application to different wheat cultivars. Journal of Cereal Science, 2011, 53, 306-311.	1.8	24
29	Biochemical markers: Efficient tools for the assessment of wheat grain tissue proportions in milling fractions. Journal of Cereal Science, 2009, 49, 55-64.	1.8	85
30	Assessment of dehulling efficiency to reduce deoxynivalenol and Fusarium level in durum wheat grains. Journal of Cereal Science, 2009, 49, 387-392.	1.8	66
31	Impact of durum wheat milling on deoxynivalenol distribution in the outcoming fractions. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2009, 26, 487-495.	1.1	32
32	Changes in common wheat grain milling behavior and tissue mechanical properties following ozone treatment. Journal of Cereal Science, 2008, 47, 245-251.	1.8	45
33	Isolation of the wheat aleurone layer for 2D electrophoresis and proteomics analysis. Journal of Cereal Science, 2008, 48, 709-714.	1.8	26
34	Development of New Dry Fractionation Processes of Wheat Grain to Address Consumers' Demand for Healthy Foods and Ingredients. , 2008, , 101-104.		1
35	Losses of nutrients and anti-nutritional factors during abrasive decortication of two pearl millet cultivars (Pennisetum glaucum). Food Chemistry, 2007, 100, 1316-1323.	4.2	56
36	Analysis of the milling reduction of bread wheat farina: Physical and biochemical characterisation. Journal of Cereal Science, 2007, 45, 97-105.	1.8	40

VALERIE LULLIEN-PELLERIN

#	Article	IF	CITATIONS
37	Mechanical properties of outer layers from near-isogenic lines of common wheat differing in hardness. Journal of Cereal Science, 2007, 45, 227-235.	1.8	32
38	Dry processes to develop wheat fractions and products with enhanced nutritional quality. Journal of Cereal Science, 2007, 46, 327-347.	1.8	265
39	Grain characterization and milling behaviour of near-isogenic lines differing by hardness. Theoretical and Applied Genetics, 2006, 114, 1-12.	1.8	57
40	Effects of calcium chloride treatments on wheat grain peroxidase activity and outer layer mechanical properties. Journal of the Science of Food and Agriculture, 2006, 86, 1596-1603.	1.7	8
41	Bran Size Distribution at Milling and Mechanical and Biochemical Characterization of Common Wheat Grain Outer Layers: A Relationship Assessment. Cereal Chemistry, 2006, 83, 641-646.	1.1	48
42	Differences in the Aleurone Layer Fate Between Hard and Soft Common Wheats at Grain Milling. Cereal Chemistry, 2005, 82, 138-143.	1.1	41
43	Iron and Zinc in Vitro Availability in Pearl Millet Flours (Pennisetum glaucum) with Varying Phytate, Tannin, and Fiber Contents. Journal of Agricultural and Food Chemistry, 2005, 53, 3240-3247.	2.4	93
44	DISTRIBUTION OF THE ALEURONE LAYER DURING THE COMMON WHEAT MILLING PROCESS. , 2005, , 236-240.		0
45	Wheat bran tissue fractionation using biochemical markers. Journal of Cereal Science, 2004, 39, 387-393.	1.8	134
46	Effect of wheat bran ball-milling on fragmentation and marker extractability of the aleurone layer. Journal of Cereal Science, 2004, 40, 275-282.	1.8	39
47	Puroindolines Form Ion Channels in Biological Membranes. Biophysical Journal, 2003, 84, 2416-2426.	0.2	46
48	High-pressure as a tool to study some proteins' properties: conformational modification, activity and oligomeric dissociation. Innovative Food Science and Emerging Technologies, 2002, 3, 209-221.	2.7	109
49	Intérêt nutritionnel de la couche à aleurone du grain de blé. Sciences Des Aliments, 2002, 22, 545-556.	0.2	27
50	Cabbage Cryoprotectin Is a Member of the Nonspecific Plant Lipid Transfer Protein Gene Family. Plant Physiology, 2001, 125, 835-846.	2.3	44
51	Reversible changes of the wheat gamma 46 gliadin conformation submitted to high pressures and temperatures. FEBS Journal, 2001, 268, 5705-12.	0.2	6
52	Study of the Temperature Effect on the Formation of Wheat Gluten Network:Â Influence on Mechanical Properties and Protein Solubility. Journal of Agricultural and Food Chemistry, 2000, 48, 2954-2959.	2.4	84
53	Production in Escherichia coli and site-directed mutagenesis of a 9-kDa nonspecific lipid transfer protein from wheat. FEBS Journal, 1999, 260, 861-868.	0.2	20
54	Characterization of wheat thioredoxin h cDNA and production of an active Triticum aestivum protein in Escherichia coli. FEBS Journal, 1998, 252, 314-324.	0.2	34

#	Article	IF	CITATIONS
55	Production of polyclonal antibodies against a wheat thioredoxinh by genetic immunization. Plant Molecular Biology Reporter, 1997, 15, 71-77.	1.0	1
56	Characterization of theTriticum durumDesf. chloroform-methanol-soluble protein family. DNA Sequence, 1995, 5, 153-162.	0.7	2
57	Purification and Activity of a Wheat 9-kDa Lipid Transfer Protein Expressed in Escherichia coli as a Fusion with the Maltose Binding Protein. Protein Expression and Purification, 1995, 6, 597-603.	0.6	11
58	Expression of a cDNA Encoding the Wheat CM 16 Protein in Escherichia coli. Protein Expression and Purification, 1994, 5, 218-224.	0.6	9