Eleanor J Mackie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6251291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell, 1986, 47, 131-139.	13.5	963
2	Endochondral ossification: How cartilage is converted into bone in the developing skeleton. International Journal of Biochemistry and Cell Biology, 2008, 40, 46-62.	1.2	763
3	Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet, The, 2010, 375, 1729-1736.	6.3	715
4	Induction of tenascin in healing wounds Journal of Cell Biology, 1988, 107, 2757-2767.	2.3	534
5	Tenascin is associated with chondrogenic and osteogenic differentiation in vivo and promotes chondrogenesis in vitro Journal of Cell Biology, 1987, 105, 2569-2579.	2.3	348
6	The skeleton: a multi-functional complex organ. The growth plate chondrocyte and endochondral ossification. Journal of Endocrinology, 2011, 211, 109-121.	1.2	346
7	Tenascin is a stromal marker for epithelial malignancy in the mammary gland Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 4621-4625.	3.3	238
8	Arginine-Specific Protease fromPorphyromonas gingivalis Activates Protease-Activated Receptors on Human Oral Epithelial Cells and Induces Interleukin-6 Secretion. Infection and Immunity, 2001, 69, 5121-5130.	1.0	227
9	Osteoblasts: novel roles in orchestration of skeletal architecture. International Journal of Biochemistry and Cell Biology, 2003, 35, 1301-1305.	1.2	212
10	Epithelial induction of stromal tenascin in the mouse mammary gland: From embryogenesis to carcinogenesis. Developmental Biology, 1988, 128, 245-255.	0.9	176
11	Cleavage and activation of proteinaseâ€activated receptorâ€2 on human neutrophils by gingipainâ€R from <i>Porphyromonas gingivalis</i> . FEBS Letters, 1998, 435, 45-48.	1.3	150
12	The high-molecular-weight J1 glycoproteins are immunochemically related to tenascin. Differentiation, 1988, 37, 104-114.	1.0	122
13	Stimulation of bone formation in vivo by transforming growth factor-β: Remodeling of woven bone and lack of inhibition by indomethacin. Bone, 1990, 11, 295-300.	1.4	118
14	Tenascin expression in the mouse: in situ localization and induction in vitro by bFGF. Journal of Cell Science, 1993, 104, 69-76.	1.2	105
15	Osteopontin and skeletal muscle myoblasts: Association with muscle regeneration and regulation of myoblast function in vitro. International Journal of Biochemistry and Cell Biology, 2008, 40, 2303-2314.	1.2	97
16	Immunohistochemical Localization of the Matrix Glycoproteins-Tenascin and the ED-sequence-containing Form of Cellular Fibronectin—in Human Permanent Teeth and Periodontal Ligament. Journal of Dental Research, 1991, 70, 19-26.	2.5	87
17	Adhesive properties of isolated chick osteocytes in vitro. Bone, 1996, 18, 305-313.	1.4	85
18	Tenascin-C. International Journal of Biochemistry and Cell Biology, 1997, 29, 1133-1137.	1.2	84

2

ELEANOR J MACKIE

#	Article	IF	CITATIONS
19	Tenascin expression in hyperproliferative skin diseases. British Journal of Dermatology, 1991, 124, 13-20.	1.4	81
20	Third metacarpal condylar fatigue fractures in equine athletes occur within previously modelled subchondral bone. Bone, 2010, 47, 826-831.	1.4	78
21	Comprehensive Profiling of Cartilage Extracellular Matrix Formation and Maturation Using Sequential Extraction and Label-free Quantitative Proteomics. Molecular and Cellular Proteomics, 2010, 9, 1296-1313.	2.5	73
22	Osteopontin, inflammation and myogenesis: influencing regeneration, fibrosis and size of skeletal muscle. Journal of Cell Communication and Signaling, 2014, 8, 95-103.	1.8	73
23	EphrinB2 signaling in osteoblasts promotes bone mineralization by preventing apoptosis. FASEB Journal, 2014, 28, 4482-4496.	0.2	70
24	Inhibition of osteoblast apoptosis by thrombin. Bone, 2003, 33, 733-743.	1.4	69
25	Thrombin, a Survival Factor for Cultured Myoblasts. Journal of Biological Chemistry, 1999, 274, 9169-9174.	1.6	66
26	Physiological death of hypertrophic chondrocytes. Osteoarthritis and Cartilage, 2007, 15, 575-586.	0.6	66
27	Protease-Activated Receptors: A Means of Converting Extracellular Proteolysis into Intracellular Signals. IUBMB Life, 2002, 53, 277-281.	1.5	60
28	Expression of protease-activated receptor-2 by osteoblasts. Bone, 2000, 26, 7-14.	1.4	59
29	Expression of Tenascin-C in Bones Responding to Mechanical Load. Journal of Bone and Mineral Research, 1997, 12, 52-58.	3.1	53
30	Establishment of a Model of Cortical Bone Repair in Mice. Calcified Tissue International, 2003, 73, 49-55.	1.5	53
31	Transcriptional Profiling of Chondrodysplasia Growth Plate Cartilage Reveals Adaptive ER-Stress Networks That Allow Survival but Disrupt Hypertrophy. PLoS ONE, 2011, 6, e24600.	1.1	50
32	The Role of Protease-Activated Receptor-1 in Bone Healing. American Journal of Pathology, 2005, 166, 857-868.	1.9	48
33	Increased autophagy in EphrinB2-deficient osteocytes is associated with elevated secondary mineralization and brittle bone. Nature Communications, 2019, 10, 3436.	5.8	48
34	Modulation of Osteoblast-like Cell Behavior by Activation of Protease-Activated Receptor-1. Journal of Bone and Mineral Research, 1999, 14, 1320-1329.	3.1	46
35	Evidence for the activation of PAR-2 by the sperm protease, acrosin: expression of the receptor on ocytes. FEBS Letters, 2000, 484, 285-290.	1.3	46
36	Osteopontin deficiency delays inflammatory infiltration and the onset of muscle regeneration in a model of muscle injury. DMM Disease Models and Mechanisms, 2013, 6, 197-205.	1.2	46

Eleanor J Mackie

#	Article	IF	CITATIONS
37	The role of tenascin-C and related glycoproteins in early chondrogenesis. , 1998, 43, 102-110.		45
38	Expression of protease-activated receptor-2 during embryonic development. Developmental Dynamics, 2000, 218, 465-471.	0.8	45
39	Subchondral bone microdamage accumulation in distal metacarpus of Thoroughbred racehorses. Equine Veterinary Journal, 2018, 50, 766-773.	0.9	45
40	Cartilage canals in equine articular/epiphyseal growth cartilage and a possible association with dyschondroplasia. Equine Veterinary Journal, 1997, 29, 360-364.	0.9	44
41	Protease-activated receptors in the musculoskeletal system. International Journal of Biochemistry and Cell Biology, 2008, 40, 1169-1184.	1.2	44
42	Comparison of the distribution patterns of tenascin and alkaline phosphatase in developing teeth, cartilage, and bone of rats and mice. The Anatomical Record, 1990, 228, 69-76.	2.3	41
43	Immunohistochemical localization of the matrix glycoprotein tenascin in the skull of the growing rat. Archives of Oral Biology, 1988, 33, 383-390.	0.8	40
44	Activation of Protease-Activated Receptor-2 Leads to Inhibition of Osteoclast Differentiation. Journal of Bone and Mineral Research, 2003, 19, 507-516.	3.1	39
45	Thrombin-stimulated growth factor and cytokine expression in osteoblasts is mediated by protease-activated receptor-1 and prostanoids. Bone, 2009, 44, 813-821.	1.4	39
46	Tenascin expression in basal cell carcinoma. British Journal of Dermatology, 1992, 127, 571-574.	1.4	38
47	Expression of the Thrombin Receptor in Developing Bone and Associated Tissues. Journal of Bone and Mineral Research, 1998, 13, 818-827.	3.1	34
48	Regulation of Tenascin-C Expression in Bone Cells by Transforming Growth Factor-β. Bone, 1998, 22, 301-307.	1.4	34
49	Altered gene expression in early osteochondrosis lesions. Journal of Orthopaedic Research, 2009, 27, 452-457.	1.2	33
50	Studies on the receptors mediating responses of osteoblasts to thrombin. International Journal of Biochemistry and Cell Biology, 2005, 37, 206-213.	1.2	29
51	Responses <i>in vivo</i> to purified poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) implanted in a murine tibial defect model. Journal of Biomedical Materials Research - Part A, 2009, 91A, 845-854.	2.1	29
52	Protease-Activated Receptor 2 Has Pivotal Roles in Cellular Mechanisms Involved in Experimental Periodontitis. Infection and Immunity, 2010, 78, 629-638.	1.0	28
53	Protease-Activated Receptor-1 Down-regulates the Murine Inflammatory and Humoral Response to Helicobacter pylori. Gastroenterology, 2010, 138, 573-582.	0.6	28
54	High Molecular Weight Gingipains from <i>Porphyromonas gingivalis</i> Induce Cytokine Responses from Human Macrophage-Like Cells via a Nonproteolytic Mechanism. Journal of Innate Immunity, 2009, 1, 109-117.	1.8	25

Eleanor J Mackie

#	Article	IF	CITATIONS
55	Proteinase-activated receptor-2 is required for normal osteoblast and osteoclast differentiation during skeletal growth and repair. Bone, 2012, 50, 704-712.	1.4	25
56	Hyaluronan Synthesis and Myogenesis. Journal of Biological Chemistry, 2013, 288, 13006-13021.	1.6	25
57	Chondrocytic EphrinB2 promotes cartilage destruction by osteoclasts in endochondral ossification. Development (Cambridge), 2016, 143, 648-57.	1.2	25
58	Role of subchondral bone remodelling in collapse of the articular surface of <scp>T</scp> horoughbred racehorses with palmar osteochondral disease. Equine Veterinary Journal, 2016, 48, 228-233.	0.9	24
59	Normal inflammation and regeneration of muscle following injury require osteopontin from both muscle and non-muscle cells. Skeletal Muscle, 2019, 9, 6.	1.9	22
60	Can highâ€resolution peripheral quantitative computed tomography imaging of subchondral and cortical bone predict condylar fracture in <scp>T</scp> horoughbred racehorses?. Equine Veterinary Journal, 2015, 47, 428-432.	0.9	21
61	Evaluation of antibodies directed against human protease-activated receptor-2. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 861-873.	1.4	20
62	The antiepileptic medications carbamazepine and phenytoin inhibit native sodium currents in murine osteoblasts. Epilepsia, 2016, 57, 1398-1405.	2.6	20
63	Functional responses of bone cells to thrombin. Biological Chemistry, 2006, 387, 1037-1041.	1.2	19
64	Exercise-induced inhibition of remodelling is focally offset with fatigue fracture in racehorses. Osteoporosis International, 2013, 24, 2043-2048.	1.3	18
65	Tenascin-C induced stimulation of chondrogenesis is dependent on the presence of the C-terminal fibrinogen-like globular domain. FEBS Letters, 2000, 480, 189-192.	1.3	16
66	Thrombin inhibits osteoclast differentiation through a non-proteolytic mechanism. Journal of Molecular Endocrinology, 2013, 50, 347-359.	1.1	16
67	Modulating chondrocyte hypertrophy in growth plate and osteoarthritic cartilage. Journal of Musculoskeletal Neuronal Interactions, 2008, 8, 308-10.	0.1	16
68	The differential effects of stanozolol on human skin and synovial fibroblastsin vitro: DNA synthesis and receptor binding. Agents and Actions, 1994, 41, 37-43.	0.7	15
69	Thrombin Is a Pro-Fibrotic Factor for Rat Renal Fibroblasts in vitro. Nephron Experimental Nephrology, 2005, 101, e42-e49.	2.4	15
70	Proteinaseâ€activated receptorâ€2 (PAR ₂) and mouse osteoblasts: Regulation of cell function and lack of specificity of PAR ₂ â€activating peptides. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 328-336.	0.9	15
71	Periostin expression distinguishes between light and dark hypertrophic chondrocytes. International Journal of Biochemistry and Cell Biology, 2010, 42, 880-889.	1.2	15
72	Identification of novel osteochondrosis— Associated genes. Journal of Orthopaedic Research, 2016, 34, 404-411.	1.2	15

ELEANOR J MACKIE

#	Article	IF	CITATIONS
73	Cholera toxin and forskolin stimulate formation of osteoclast-like cells in mouse marrow cultures and cultured mouse calvarial bones. European Journal of Oral Sciences, 1999, 107, 45-54.	0.7	14
74	Expression of tenascin in perifollicular connective tissue: comparison of normal scalp and alopecia areata. Archives of Dermatological Research, 1991, 283, 86-90.	1.1	13
75	Dissection of Protease-Activated Receptor-1-Dependent and -Independent Responses to Thrombin in Skeletal Myoblasts. Experimental Cell Research, 2002, 274, 149-156.	1.2	13
76	Prevalence of subchondral bone pathological changes in the distal metacarpi/metatarsi of racing Thoroughbred horses. Australian Veterinary Journal, 2017, 95, 362-369.	0.5	13
77	Hypertrophy and physiological death of equine chondrocytes <i>in vitro</i> . Equine Veterinary Journal, 2007, 39, 546-552.	0.9	12
78	Tumour progression and cancer-induced pain: A role for protease-activated receptor-2?. International Journal of Biochemistry and Cell Biology, 2014, 57, 149-156.	1.2	9
79	Microstructural properties of the proximal sesamoid bones of Thoroughbred racehorses in training. Equine Veterinary Journal, 2021, 53, 1169-1177.	0.9	9
80	Keratinocyte-specific ablation of protease-activated receptor 2 prevents gingival inflammation and bone loss in a mouse model of periodontal disease. Cellular Microbiology, 2018, 20, e12891.	1.1	8
81	Immunohistochemical localization of a tenascin-like extracellular matrix protein in sea urchin embryos. Roux's Archives of Developmental Biology, 1990, 199, 169-173.	1.2	7
82	Myoblasts Isolated from Hypertrophy-Responsive Callipyge Muscles Show Altered Growth Rates and Increased Resistance to Serum Deprivation-Induced Apoptosis. Cells Tissues Organs, 2008, 187, 141-151.	1.3	7
83	Identification of light and dark hypertrophic chondrocytes in mouse and rat chondrocyte pellet cultures. Tissue and Cell, 2010, 42, 121-128.	1.0	6
84	The vacuolar H + ATPase V 0 subunit d 2 is associated with chondrocyte hypertrophy and supports chondrocyte differentiation. Bone Reports, 2017, 7, 98-107.	0.2	6
85	Immunohistochemical localization of tenascin and fibronectin in the dentine and gingiva of Canis familiaris. Archives of Oral Biology, 1991, 36, 165-170.	0.8	5
86	The gingipains from <i>Porphyromonas gingivalis</i> do not directly induce osteoclast differentiation in primary mouse bone marrow cultures. Journal of Periodontal Research, 2009, 44, 565-567.	1.4	5
87	Contractile properties of slow and fast skeletal muscles from protease activated receptorâ€1 null mice. Muscle and Nerve, 2014, 50, 991-998.	1.0	3
88	A T cell-specific knockout reveals an important role for protease-activated receptor 2 in lymphocyte development. International Journal of Biochemistry and Cell Biology, 2017, 92, 95-103.	1.2	3
89	Protease-activated receptor-2 promotes osteogenesis in skeletal mesenchymal stem cells at the expense of adipogenesis: Involvement of interleukin-6. Bone Reports, 2021, 15, 101113.	0.2	2
90	Associations between the radiographic appearance of vascular channels in proximal sesamoid bones, their microstructural characteristics and past racing performance in Thoroughbreds. Equine Veterinary Journal, 2020, 52, 670-677.	0.9	1

#	Article	IF	CITATIONS
91	Tenascin: an extracellular matrix protein associated with bone growth. , 1996, , 87-98.		0
92	Growth Plate Borderline Chondrocytes: A New Source of Metaphyseal Mesenchymal Precursors. Journal of Bone and Mineral Research, 2019, 34, 1385-1386.	3.1	0
93	Proteaseâ€activated receptorâ€2 dependent and independent responses of bone cells to prostate cancer cell secretory products. Prostate, 2022, 82, 723-739.	1.2	0