Luis Estevez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6251090/publications.pdf

Version: 2024-02-01

394421 677142 2,791 22 19 22 h-index citations g-index papers 22 22 22 5711 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Structureâ€"Property Correlation of Hierarchically Porous Carbons for Fluorocarbon Adsorption. ACS Applied Materials & amp; Interfaces, 2021, 13, 54266-54273.	8.0	7
2	In situ generation of carbon dots within a polymer matrix. Polymer, 2020, 188, 122159.	3.8	24
3	Solidâ€State Lithium/Selenium–Sulfur Chemistry Enabled via a Robust Solidâ€Electrolyte Interphase. Advanced Energy Materials, 2019, 9, 1802235.	19.5	63
4	Hierarchically Porous Carbon Materials for CO ₂ Capture: The Role of Pore Structure. Industrial & Description of Pore Structure. Structure. Industrial & Description of Pore Structure. Industrial & Description of Pore Structure.	3.7	83
5	A Stable Graphitic, Nanocarbonâ€Encapsulated, Cobaltâ€Rich Core–Shell Electrocatalyst as an Oxygen Electrode in a Water Electrolyzer. Advanced Energy Materials, 2018, 8, 1702838.	19.5	113
6	Effect of calcination temperature on the electrochemical properties of nickel-rich LiNio.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. Nano Energy, 2018, 49, 538-548.	16.0	213
7	A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy, 2018, 50, 589-597.	16.0	191
8	Water Electrolysis: A Stable Graphitic, Nanocarbonâ€Encapsulated, Cobaltâ€Rich Core–Shell Electrocatalyst as an Oxygen Electrode in a Water Electrolyzer (Adv. Energy Mater. 14/2018). Advanced Energy Materials, 2018, 8, 1870065.	19.5	7
9	Dramatic photoluminescence quenching in carbon dots induced by cyclic voltammetry. Chemical Communications, 2018, 54, 9067-9070.	4.1	15
10	Tailored Reaction Route by Micropore Confinement for Li–S Batteries Operating under Lean Electrolyte Conditions. Advanced Energy Materials, 2018, 8, 1800590.	19.5	55
11	Selfâ€Assembled Fe–Nâ€Doped Carbon Nanotube Aerogels with Singleâ€Atom Catalyst Feature as Highâ€Efficiency Oxygen Reduction Electrocatalysts. Small, 2017, 13, 1603407.	10.0	254
12	Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nature Energy, 2017, 2, 813-820.	39.5	326
13	Hierarchically Porous Graphitic Carbon with Simultaneously High Surface Area and Colossal Pore Volume Engineered <i>via</i> Ice Templating. ACS Nano, 2017, 11, 11047-11055.	14.6	69
14	Pore-Engineered Metal–Organic Frameworks with Excellent Adsorption of Water and Fluorocarbon Refrigerant for Cooling Applications. Journal of the American Chemical Society, 2017, 139, 10601-10604.	13.7	128
15	A combined salt–hard templating approach for synthesis of multi-modal porous carbons used for probing the simultaneous effects of porosity and electrode engineering on EDLC performance. Carbon, 2015, 87, 29-43.	10.3	29
16	3D conducting polymer platforms for electrical control of protein conformation and cellular functions. Journal of Materials Chemistry B, 2015, 3, 5040-5048.	5.8	116
17	A facile approach for the synthesis of monolithic hierarchical porous carbons – high performance materials for amine based CO2 capture and supercapacitor electrode. Energy and Environmental Science, 2013, 6, 1785.	30.8	181
18	Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating. Journal of the American Chemical Society, 2011, 133, 6122-6125.	13.7	207

Luis Estevez

#	Article	IF	CITATION
19	High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy and Environmental Science, 2011, 4, 444-452.	30.8	446
20	Facile and Scalable Synthesis of Monodispersed Spherical Capsules with a Mesoporous Shell. Chemistry of Materials, 2010, 22, 2693-2695.	6.7	205
21	Superhydrophilic and solvent resistant coatings on polypropylene fabrics by a simple deposition process. Journal of Materials Chemistry, 2010, 20, 1651.	6.7	35
22	A plasmonic fluid with dynamically tunable optical properties. Journal of Materials Chemistry, 2009, 19, 8728.	6.7	24